
Interactive System Productivity Facility (ISPF)

Services Guide
z/OS Version 1 Release 2.0

SC34-4819-01

���





Interactive System Productivity Facility (ISPF)

Services Guide
z/OS Version 1 Release 2.0

SC34-4819-01

���



Note
Before using this document, read the general information under “Notices” on page 307.

Second Edition (October 2001)

This edition applies to ISPF for Version 1 Release 2 of the licensed program z/OS (program number 5694-A01) and
to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for comments appears at the back of this publication. If the form has been removed, and you have
ISPF-specific comments, address your comments to:
International Business Machines Corporation
Software Reengineering
Department G7IA / Building 503
Research Triangle Park, NC 27709-9990

FAX (United States & Canada): 1+800+227-5088
IBMLink (United States customers only): CIBMORCF@RALVM17
IBM Mail Exchange: USIB2HPD@VNET.IBM.COM
Internet: USIB2HPD@VNET.IBM.COM

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
Title and order number of this book
Page number or topic related to your comment

The ISPF development team maintains a site on the World-Wide Web. The URL for the site is:
http://www.software.ibm.com/ad/ispf

© Copyright International Business Machines Corporation 1980, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Figures . . . . . . . . . . . . . . . ix

Preface . . . . . . . . . . . . . . . xi
Who Should Use This Book? . . . . . . . . . xi
What Is in This Book? . . . . . . . . . . . xi

Summary of Changes . . . . . . . . xiii
ISPF Product Changes . . . . . . . . . . xiii
ISPF DM Component Changes. . . . . . . . xiii
ISPF PDF Component Changes . . . . . . . . xv
ISPF SCLM Component Changes . . . . . . . xvi
ISPF Client/Server Component Changes . . . . xvi
ISPF User Interface Considerations . . . . . . xvi
ISPF Migration Considerations . . . . . . . xvii

ISPF Profiles . . . . . . . . . . . . xvii
Year 2000 Support for ISPF. . . . . . . . xvii

What’s in the z/OS V1R2.0 ISPF
library? . . . . . . . . . . . . . . xix
z/OS V1R2.0 ISPF . . . . . . . . . . . . xix

Elements and Features in z/OS . . . . xxi

The ISPF User Interface . . . . . . . xxv
Some Terms You Should Know . . . . . . . xxv
How to Navigate in ISPF without Using Action
Bars . . . . . . . . . . . . . . . . xxvi
How to Navigate in ISPF Using the Action Bar
Interface . . . . . . . . . . . . . . . xxvi

Action Bars . . . . . . . . . . . . . xxvi
Action Bar Choices . . . . . . . . . . xxviii
Point-and-Shoot Text Fields . . . . . . . xxx
Function Keys . . . . . . . . . . . . xxx
Selection Fields . . . . . . . . . . . xxxi

Command Nesting . . . . . . . . . . . xxxii

Chapter 1. Introduction to ISPF Services 1
Description of the Services. . . . . . . . . . 1

Notation Conventions . . . . . . . . . . 2
Using ISPQRY to Test Whether ISPF Is Active . . . 2
Invoking the ISPF Services. . . . . . . . . . 2

Load Module Search Order . . . . . . . . 3
Invoking Services from Command Procedures . . 3
Invoking ISPF Services with Program Functions . 5

Return Codes from Services . . . . . . . . . 13
Command Invocation Return Code Variable . . 13
Call Invocation Return Code Variables . . . . 13
Return Code of 12 or Higher . . . . . . . 14
System Variables Used to Format Error Messages 14
Return Codes from I/O and Command Routines 15
A Summary of the ISPF Services . . . . . . 15

Chapter 2. Description of the ISPF
Services . . . . . . . . . . . . . . 21
ADDPOP – Start Pop-Up Window Mode . . . . 21

Command Procedure Format . . . . . . . 21
Call Invocation Format . . . . . . . . . 21
Parameters . . . . . . . . . . . . . 21
Return Codes. . . . . . . . . . . . . 22
Example . . . . . . . . . . . . . . 22

BRIF – Browse Interface . . . . . . . . . . 23
Command Invocation Format . . . . . . . 23
Call Invocation Format . . . . . . . . . 24
Parameters . . . . . . . . . . . . . 24
Dialog-Supplied Routines. . . . . . . . . 25
Read Routine . . . . . . . . . . . . . 25
Command Routine . . . . . . . . . . . 26
Return Codes. . . . . . . . . . . . . 26

BROWSE – Browse a Data Set . . . . . . . . 28
Command Invocation Format . . . . . . . 28
Call Invocation Format . . . . . . . . . 28
Parameters . . . . . . . . . . . . . 28
Return Codes. . . . . . . . . . . . . 30
Example . . . . . . . . . . . . . . 30

CONTROL – Set Processing Modes . . . . . . 31
Command Invocation Format . . . . . . . 31
Call Invocation Format . . . . . . . . . 31
ADDPOP/REMPOP Service Relation to Control
Service . . . . . . . . . . . . . . . 32
Parameters . . . . . . . . . . . . . 32
Return Codes. . . . . . . . . . . . . 37
Example . . . . . . . . . . . . . . 37

DISPLAY – Display Panels and Messages . . . . 38
Command Invocation Format . . . . . . . 38
Call Invocation Format . . . . . . . . . 38
Parameters . . . . . . . . . . . . . 39
Using the COMMAND Option . . . . . . . 41
Return Codes. . . . . . . . . . . . . 42
Example 1 . . . . . . . . . . . . . . 42
Example 2 . . . . . . . . . . . . . . 42
Example 3 . . . . . . . . . . . . . . 43
Example 4 . . . . . . . . . . . . . . 43
Example 5 . . . . . . . . . . . . . . 44

DSINFO – Data Set Information Dialog Service . . 44
Command Invocation Format . . . . . . . 44
Call Invocation Format . . . . . . . . . 44
Parameters . . . . . . . . . . . . . 45
Return Codes. . . . . . . . . . . . . 46
Example . . . . . . . . . . . . . . 46

EDIF – Edit Interface . . . . . . . . . . . 46
Command Invocation Format . . . . . . . 47
Call Invocation Format . . . . . . . . . 47
Parameters . . . . . . . . . . . . . 48
Dialog-Supplied Routines. . . . . . . . . 49
Read Routine . . . . . . . . . . . . . 50
Write Routine. . . . . . . . . . . . . 50
Command Routine . . . . . . . . . . . 51

© Copyright IBM Corp. 1980, 2001 iii

||
||
||
||



Return Codes. . . . . . . . . . . . . 52
Read Routine . . . . . . . . . . . . . 52
Write Routine Return Codes . . . . . . . . 52
Command Routine Return Codes . . . . . . 52
EDIF Service Return Codes . . . . . . . . 53
Example . . . . . . . . . . . . . . 53

EDIREC - Initialize Edit Recovery . . . . . . . 53
Command Invocation Format . . . . . . . 53
Call Invocation Format . . . . . . . . . 53
Parameters . . . . . . . . . . . . . 53
Return Codes. . . . . . . . . . . . . 54
Example . . . . . . . . . . . . . . 55

EDIT – Edit a Data Set . . . . . . . . . . 55
Command Invocation Format . . . . . . . 56
Call Invocation Format . . . . . . . . . 57
Parameters . . . . . . . . . . . . . 58
Return Codes. . . . . . . . . . . . . 60
Example 1 . . . . . . . . . . . . . . 60
Example 2 . . . . . . . . . . . . . . 61
Command Invocation . . . . . . . . . . 61

EDREC – Specify Edit Recovery Handling . . . . 61
Command Invocation Format . . . . . . . 62
Call Invocation Format . . . . . . . . . 62
Parameters . . . . . . . . . . . . . 62
Return Codes. . . . . . . . . . . . . 64
Example . . . . . . . . . . . . . . 65

FILESTAT – Statistics for a file . . . . . . . . 65
Command Invocation Format . . . . . . . 65
Call Invocation Format . . . . . . . . . 65
Parameters . . . . . . . . . . . . . 65
Return Codes. . . . . . . . . . . . . 65
Example . . . . . . . . . . . . . . 66

FILEXFER – Upload or Download File . . . . . 66
Command Invocation Format . . . . . . . 66
Call Invocation Format . . . . . . . . . 67
Parameters . . . . . . . . . . . . . 67
Return Codes. . . . . . . . . . . . . 68
Example . . . . . . . . . . . . . . 69

FTCLOSE – End File Tailoring . . . . . . . . 69
Command Invocation Format . . . . . . . 70
Call Invocation Format . . . . . . . . . 70
Parameters . . . . . . . . . . . . . 70
Return Codes. . . . . . . . . . . . . 70
Example . . . . . . . . . . . . . . 71

FTERASE – Erase File Tailoring Output . . . . . 71
Command Invocation Format . . . . . . . 71
Call Invocation Format . . . . . . . . . 71
Parameters . . . . . . . . . . . . . 71
Return Codes. . . . . . . . . . . . . 71
Example . . . . . . . . . . . . . . 72

FTINCL – Include a Skeleton . . . . . . . . 72
Command Invocation Format . . . . . . . 72
Call Invocation Format . . . . . . . . . 72
Parameters . . . . . . . . . . . . . 72
Return Codes. . . . . . . . . . . . . 73
Example . . . . . . . . . . . . . . 73

FTOPEN – Begin File Tailoring . . . . . . . . 73
Command Invocation Format . . . . . . . 73
Call Invocation Format . . . . . . . . . 73
Parameters . . . . . . . . . . . . . 74
Return Codes. . . . . . . . . . . . . 74

Example . . . . . . . . . . . . . . 74
GETMSG – Get a Message . . . . . . . . . 75

Command Invocation Format . . . . . . . 75
Call Invocation Format . . . . . . . . . 75
Parameters . . . . . . . . . . . . . 76
Return Codes. . . . . . . . . . . . . 76
Example . . . . . . . . . . . . . . 76

GRERROR – Graphics Error Block Service . . . . 77
Command Invocation Format . . . . . . . 77
Call Invocation Format . . . . . . . . . 77
Parameters . . . . . . . . . . . . . 77
Return Codes. . . . . . . . . . . . . 77

GRINIT – Graphics Initialization . . . . . . . 77
Command Invocation Format . . . . . . . 79
Call Invocation Format . . . . . . . . . 79
Parameters . . . . . . . . . . . . . 79
Return Codes. . . . . . . . . . . . . 79
Example . . . . . . . . . . . . . . 79

GRTERM – Graphics Termination Service . . . . 79
Command Invocation Format . . . . . . . 80
Call Invocation Format . . . . . . . . . 80
Return Codes. . . . . . . . . . . . . 80

LIBDEF – Allocate Application Libraries . . . . . 80
LIBDEF Display Utility . . . . . . . . . 83
User Link Libraries . . . . . . . . . . . 85
Message Libraries . . . . . . . . . . . 86

LIST – Write Lines to the List Data Set . . . . . 94
Command Invocation Format . . . . . . . 94
Call Invocation Format . . . . . . . . . 94
Parameters . . . . . . . . . . . . . 95
Return Codes. . . . . . . . . . . . . 96
Formatting Data to be Written to the List Data
Set . . . . . . . . . . . . . . . . 96
List Data Set Characteristics Affect the LIST
Service . . . . . . . . . . . . . . . 96
Controlling Line Spacing, Page Eject, and
Highlighting . . . . . . . . . . . . . 96
How Carriage Control Characters Affect
Truncation . . . . . . . . . . . . . . 98
Example 1 . . . . . . . . . . . . . . 98
Example 2 . . . . . . . . . . . . . . 98
Example 3 . . . . . . . . . . . . . . 99
Example 4 . . . . . . . . . . . . . . 99

LMCLOSE – Close a Data Set . . . . . . . . 99
Command Invocation Format . . . . . . . 99
Call Invocation Format . . . . . . . . . 100
Parameters . . . . . . . . . . . . . 100
Return Codes . . . . . . . . . . . . 100
Example . . . . . . . . . . . . . . 100

LMCOMP – Compresses a Partitioned Data Set . . 100
Command Invocation Format . . . . . . . 101
Call Invocation Format . . . . . . . . . 101
Parameters . . . . . . . . . . . . . 101
Return Codes . . . . . . . . . . . . 101
Example . . . . . . . . . . . . . . 101

LMCOPY – Copy Members of a Data Set . . . . 102
Command Invocation Format . . . . . . . 102
Call Invocation Format . . . . . . . . . 103
Parameters . . . . . . . . . . . . . 103
Return Codes . . . . . . . . . . . . 104
Example . . . . . . . . . . . . . . 105

iv z/OS V1R2.0 ISPF Services Guide



LMDDISP – Data Set List Service . . . . . . . 105
Command Invocation Format . . . . . . . 105
Call Invocation Format . . . . . . . . . 106
Parameters . . . . . . . . . . . . . 106
Return Codes . . . . . . . . . . . . 106
Example . . . . . . . . . . . . . . 107

QUERYENQ – Return ENQs . . . . . . . . 107
Command Invocation Format . . . . . . . 107
Call Invocation Format . . . . . . . . . 107
Parameters . . . . . . . . . . . . . 107
Variables Returned in Each Row of the Table 108
Return Codes . . . . . . . . . . . . 109

LMDFREE – Free a Data Set List ID . . . . . . 109
Command Invocation Format . . . . . . . 109
Call Invocation Format . . . . . . . . . 109
Parameters . . . . . . . . . . . . . 110
Return Codes . . . . . . . . . . . . 110
Example . . . . . . . . . . . . . . 110

LMDINIT – Initialize a Data Set List. . . . . . 110
Command Invocation Format . . . . . . . 111
Call Invocation Format . . . . . . . . . 111
Parameters . . . . . . . . . . . . . 111
Return Codes . . . . . . . . . . . . 111
Example . . . . . . . . . . . . . . 112

LMDLIST – List Data Sets . . . . . . . . . 112
Command Invocation Format . . . . . . . 113
Call Invocation Format . . . . . . . . . 113
Parameters . . . . . . . . . . . . . 113
Return Codes . . . . . . . . . . . . 114
Example . . . . . . . . . . . . . . 115

LMERASE – Erase a Data Set . . . . . . . . 115
Command Invocation Format . . . . . . . 115
Call Invocation Format . . . . . . . . . 116
Parameters . . . . . . . . . . . . . 116
Return Codes . . . . . . . . . . . . 117
Example . . . . . . . . . . . . . . 117

LMFREE – Free Data Set from its Association with
Data ID . . . . . . . . . . . . . . . 118

Command Invocation Format . . . . . . . 118
Call Invocation Format . . . . . . . . . 118
Parameters . . . . . . . . . . . . . 118
Return Codes . . . . . . . . . . . . 118
Example . . . . . . . . . . . . . . 119

LMGET – Read a Logical Record from a Data Set 119
Command Invocation Format . . . . . . . 119
Call Invocation Format . . . . . . . . . 119
Parameters . . . . . . . . . . . . . 120
Return Codes . . . . . . . . . . . . 120
Example . . . . . . . . . . . . . . 121

LMINIT – Generate a Data ID for a Data Set . . . 121
Command Invocation Format . . . . . . . 122
Call Invocation Format . . . . . . . . . 122
Parameters . . . . . . . . . . . . . 123
Return Codes . . . . . . . . . . . . 125
Examples . . . . . . . . . . . . . . 125

LMMADD – Add a Member to a Data Set. . . . 127
Command Invocation Format . . . . . . . 127
Call Invocation Format . . . . . . . . . 127
Parameters . . . . . . . . . . . . . 127
Return Codes . . . . . . . . . . . . 129
Example . . . . . . . . . . . . . . 129

LMMDEL – Delete a Member from a Data Set . . 129
Command Invocation Format . . . . . . . 130
Call Invocation Format . . . . . . . . . 130
Parameters . . . . . . . . . . . . . 130
Return Codes . . . . . . . . . . . . 130
Example . . . . . . . . . . . . . . 131

LMMDISP – Member List Service . . . . . . 131
Dialog Variables . . . . . . . . . . . 132
DISPLAY Option . . . . . . . . . . . 133
GET Option . . . . . . . . . . . . . 136
PUT Option . . . . . . . . . . . . . 137
ADD Option . . . . . . . . . . . . 139
Delete Option . . . . . . . . . . . . 141
FREE Option . . . . . . . . . . . . 143

LMMFIND – Find a Library Member . . . . . 144
Command Invocation Format . . . . . . . 144
Call Invocation Format . . . . . . . . . 145
Parameters . . . . . . . . . . . . . 145
Return Codes . . . . . . . . . . . . 147
Example . . . . . . . . . . . . . . 148

LMMLIST – List a Library’s Members . . . . . 148
Command Invocation Format . . . . . . . 149
Call Invocation Format . . . . . . . . . 149
Parameters . . . . . . . . . . . . . 149
Return Codes . . . . . . . . . . . . 150
Example . . . . . . . . . . . . . . 151

LMMOVE – Move Members of a Data Set . . . . 152
Command Invocation Format . . . . . . . 152
Call Invocation Format . . . . . . . . . 153
Parameters . . . . . . . . . . . . . 153
Return Codes . . . . . . . . . . . . 154
Example . . . . . . . . . . . . . . 154

LMMREN – Rename a Data Set Member . . . . 155
Command Invocation Format . . . . . . . 155
Call Invocation Format . . . . . . . . . 155
Parameters . . . . . . . . . . . . . 155
Return Codes . . . . . . . . . . . . 156
Example . . . . . . . . . . . . . . 156

LMMREP – Replace a Member of a Data Set . . . 157
Command Invocation Format . . . . . . . 157
Call Invocation Format . . . . . . . . . 157
Parameters . . . . . . . . . . . . . 157
Return Codes . . . . . . . . . . . . 158
Example . . . . . . . . . . . . . . 159

LMMSTATS – Set and Store, or Delete ISPF
Statistics . . . . . . . . . . . . . . . 159

Command Invocation Format . . . . . . . 159
Call Invocation Format . . . . . . . . . 160
Parameters . . . . . . . . . . . . . 160
Return Codes . . . . . . . . . . . . 162
Example . . . . . . . . . . . . . . 162

LMOPEN – Open a Data Set . . . . . . . . 162
Command Invocation Format . . . . . . . 163
Call Invocation Format . . . . . . . . . 163
Parameters . . . . . . . . . . . . . 163
Return Codes . . . . . . . . . . . . 164
Example . . . . . . . . . . . . . . 164

LMPRINT – Print a Partitioned or Sequential Data
Set . . . . . . . . . . . . . . . . . 165

Command Invocation Format . . . . . . . 165
Call Invocation Format . . . . . . . . . 165

Contents v

||
||
||
||
||
||



Parameters . . . . . . . . . . . . . 165
Return Codes . . . . . . . . . . . . 166
Example . . . . . . . . . . . . . . 166

LMPUT – Write a Logical Record to a Data Set . . 166
Command Invocation Format . . . . . . . 167
Call Invocation Format . . . . . . . . . 167
Parameters . . . . . . . . . . . . . 167
Return Codes . . . . . . . . . . . . 168
Example . . . . . . . . . . . . . . 168

LMQUERY – Give a Dialog Information about a
Data Set . . . . . . . . . . . . . . . 169

Command Invocation Format . . . . . . . 169
Call Invocation Format . . . . . . . . . 169
Parameters . . . . . . . . . . . . . 170
Return Codes . . . . . . . . . . . . 171
Example . . . . . . . . . . . . . . 171

LMRENAME – Rename an ISPF Library . . . . 172
Command Invocation Format . . . . . . . 172
Call Invocation Format . . . . . . . . . 172
Parameters . . . . . . . . . . . . . 173
Return Codes . . . . . . . . . . . . 173
Example . . . . . . . . . . . . . . 174

LOG – Write a Message to the Log Data Set . . . 174
Command Invocation Format . . . . . . . 174
Call Invocation Format . . . . . . . . . 174
Parameters . . . . . . . . . . . . . 174
Return Codes . . . . . . . . . . . . 175
Example 1 . . . . . . . . . . . . . 175
Example 2 . . . . . . . . . . . . . 175
Example 3 . . . . . . . . . . . . . 175

MEMLIST – Member List Dialog Service . . . . 175
Command Invocation Format . . . . . . . 176
Call Invocation Format . . . . . . . . . 176
Parameters . . . . . . . . . . . . . 176
Return Codes . . . . . . . . . . . . 177
Example . . . . . . . . . . . . . . 177

PQUERY – Obtain Panel Information . . . . . 177
Command Invocation Format . . . . . . . 178
Call Invocation Format . . . . . . . . . 178
Parameters . . . . . . . . . . . . . 178
Return Codes . . . . . . . . . . . . 179
Example . . . . . . . . . . . . . . 179

QBASELIB – Query Base Library Information . . 180
Command Invocation Format . . . . . . . 180
Call Invocation Format . . . . . . . . . 180
Parameters . . . . . . . . . . . . . 180
Return Codes . . . . . . . . . . . . 180
Example . . . . . . . . . . . . . . 181

QLIBDEF – Query LIBDEF Definition Information 181
Command Invocation Format . . . . . . . 181
Call Invocation Format . . . . . . . . . 181
Parameters . . . . . . . . . . . . . 181
Return Codes . . . . . . . . . . . . 182
Example . . . . . . . . . . . . . . 182

QUERYENQ – Query System ENQ Data . . . . 183
Command Invocation Format . . . . . . . 183
Call Invocation Format . . . . . . . . . 183
Parameters . . . . . . . . . . . . . 183
Return codes . . . . . . . . . . . . 184

REMPOP – Remove a Pop-Up Window . . . . 184184
Call Invocation Format . . . . . . . . . 185

Parameters . . . . . . . . . . . . . 185
Return codes . . . . . . . . . . . . 185

SELECT – Select a Panel or Function . . . . . 185
Command Invocation Format . . . . . . . 185
Call Invocation Format . . . . . . . . . 186
Parameters . . . . . . . . . . . . . 186
Return Codes . . . . . . . . . . . . 192
Example 1 . . . . . . . . . . . . . 193
Example 2 . . . . . . . . . . . . . 193
Example 3 . . . . . . . . . . . . . 193
Example 4 . . . . . . . . . . . . . 193
Example 5 . . . . . . . . . . . . . 193
Example 6 . . . . . . . . . . . . . 193

SETMSG – Set Next Message . . . . . . . . 193
Command Invocation Format . . . . . . . 194
Call Invocation Format . . . . . . . . . 194
Parameters . . . . . . . . . . . . . 194
Return Codes . . . . . . . . . . . . 195
Example 1 . . . . . . . . . . . . . 195
Example 2 . . . . . . . . . . . . . 195
Return Codes . . . . . . . . . . . . 196

TBADD – Add a Row to a Table . . . . . . . 196
Command Invocation Format . . . . . . . 197
Call Invocation Format . . . . . . . . . 197
Parameters . . . . . . . . . . . . . 197
Return Codes . . . . . . . . . . . . 198
Example 1 . . . . . . . . . . . . . 198
Example 2 . . . . . . . . . . . . . 199

TBBOTTOM – Set the Row Pointer to Bottom . . 199
Command Invocation Format . . . . . . . 199
Call Invocation Format . . . . . . . . . 199
Parameters . . . . . . . . . . . . . 199
Return Codes . . . . . . . . . . . . 200
Example . . . . . . . . . . . . . . 200

TBCLOSE – Close and Save a Table . . . . . . 201
Command Invocation Format . . . . . . . 201
Call Invocation Format . . . . . . . . . 201
Parameters . . . . . . . . . . . . . 202
Return Codes . . . . . . . . . . . . 202
Example . . . . . . . . . . . . . . 203

TBCREATE – Create a New Table . . . . . . 203
Command Invocation Format . . . . . . . 203
Call Invocation Format . . . . . . . . . 203
Parameters . . . . . . . . . . . . . 204
Return Codes . . . . . . . . . . . . 205
Example 1 . . . . . . . . . . . . . 205
Example 2 . . . . . . . . . . . . . 205
Example 3 . . . . . . . . . . . . . 205

TBDELETE – Delete a Row from a Table . . . . 206
Command Invocation Format . . . . . . . 206
Call Invocation Format . . . . . . . . . 206
Parameters . . . . . . . . . . . . . 206
Return Codes . . . . . . . . . . . . 206
Example . . . . . . . . . . . . . . 206

TBDISPL – Display Table Information . . . . . 207
TBDISPL Operation . . . . . . . . . . 208
Operational Results From User Actions . . . . 208
Command Invocation Format . . . . . . . 209
Call Invocation Format . . . . . . . . . 210
Parameters . . . . . . . . . . . . . 210
Parameter Processing . . . . . . . . . . 212

vi z/OS V1R2.0 ISPF Services Guide

||
||
||
||
||



Return Codes . . . . . . . . . . . . 213
Example . . . . . . . . . . . . . . 214
System Variables Related to TBDISPL . . . . 214
Panel Control Variables Related to TBDISPL . . 216
Parameter Variables Related to TBDISPL . . . 216
Using TBDISPL with Other Services . . . . . 216
Techniques for Using the TBDISPL Service . . 218
Rules Applying to Variable Model Lines . . . 220
An Example of Using the TBDISPL and TBPUT
Services . . . . . . . . . . . . . . 223
Command Procedure Function . . . . . . 224
Description of Function Steps . . . . . . . 225
TBDISPL Summary . . . . . . . . . . 229

TBEND – Close a Table without Saving . . . . 232
Command Invocation Format . . . . . . . 232
Call Invocation Format . . . . . . . . . 232
Parameters . . . . . . . . . . . . . 232
Return Codes . . . . . . . . . . . . 233
Example . . . . . . . . . . . . . . 233

TBERASE – Erase a Table . . . . . . . . . 233
Command Invocation Format . . . . . . . 233
Call Invocation Format . . . . . . . . . 233
Parameters . . . . . . . . . . . . . 233
Return Codes . . . . . . . . . . . . 234
Example . . . . . . . . . . . . . . 234

TBEXIST – Determine Whether a Row Exists in a
Table . . . . . . . . . . . . . . . . 234

Command Invocation Format . . . . . . . 234
Call Invocation Format . . . . . . . . . 235
Parameters . . . . . . . . . . . . . 235
Return Codes . . . . . . . . . . . . 235
Example . . . . . . . . . . . . . . 235

TBGET – Retrieve a Row from a Table . . . . . 236
Command Invocation Format . . . . . . . 236
Call Invocation Format . . . . . . . . . 236
Parameters . . . . . . . . . . . . . 236
Return Codes . . . . . . . . . . . . 237
Example . . . . . . . . . . . . . . 237

TBMOD – Modify a Row in a Table . . . . . . 237
Command Invocation Format . . . . . . . 238
Call Invocation Format . . . . . . . . . 238
Parameters . . . . . . . . . . . . . 238
Return Codes . . . . . . . . . . . . 239
Example . . . . . . . . . . . . . . 239

TBOPEN – Open a Table . . . . . . . . . 239
Command Invocation Format . . . . . . . 240
Call Invocation Format . . . . . . . . . 240
Parameters . . . . . . . . . . . . . 240
Return Codes . . . . . . . . . . . . 241
Example . . . . . . . . . . . . . . 241

TBPUT – Update a Row in a Table . . . . . . 241
Command Invocation Format . . . . . . . 241
Call Invocation Format . . . . . . . . . 242
Parameters . . . . . . . . . . . . . 242
Return Codes . . . . . . . . . . . . 242
Example . . . . . . . . . . . . . . 242

TBQUERY – Obtain Table Information . . . . . 243
Command Invocation Format . . . . . . . 243
Call Invocation Format . . . . . . . . . 243
Parameters . . . . . . . . . . . . . 243
Return Codes . . . . . . . . . . . . 244

Example . . . . . . . . . . . . . . 244
TBSARG – Define a Search Argument . . . . . 245

Command Invocation Format . . . . . . . 246
Call Invocation Format . . . . . . . . . 246
Parameters . . . . . . . . . . . . . 246
Return Codes . . . . . . . . . . . . 248
Examples . . . . . . . . . . . . . . 248

TBSAVE – Save a Table . . . . . . . . . . 249
Command Invocation Format . . . . . . . 249
Call Invocation Format . . . . . . . . . 249
Parameters . . . . . . . . . . . . . 249
Return Codes . . . . . . . . . . . . 250
Example . . . . . . . . . . . . . . 250

TBSCAN – Search a Table . . . . . . . . . 251
Command Invocation Format . . . . . . . 252
Call Invocation Format . . . . . . . . . 252
Parameters . . . . . . . . . . . . . 252
Return Codes . . . . . . . . . . . . 254
Example 1 . . . . . . . . . . . . . 254
Example 2 . . . . . . . . . . . . . 254
Example 3 . . . . . . . . . . . . . 255

TBSKIP – Move the Row Pointer . . . . . . . 255
Command Invocation Format . . . . . . . 255
Call Invocation Format . . . . . . . . . 256
Parameters . . . . . . . . . . . . . 256
Return Codes . . . . . . . . . . . . 257
Example . . . . . . . . . . . . . . 257

TBSORT – Sort a Table . . . . . . . . . . 257
Command Invocation Format . . . . . . . 258
Call Invocation Format . . . . . . . . . 258
Parameters . . . . . . . . . . . . . 258
Return Codes . . . . . . . . . . . . 259
Example 1 . . . . . . . . . . . . . 260
Example 2 . . . . . . . . . . . . . 260

TBSTATS – Retrieve Table Statistics . . . . . . 260
Command Invocation Format . . . . . . . 261
Call Invocation Format . . . . . . . . . 261
Parameters . . . . . . . . . . . . . 262
Return Codes . . . . . . . . . . . . 264
Example . . . . . . . . . . . . . . 264

TBTOP – Set the Row Pointer to the Top . . . . 264
Command Invocation Format . . . . . . . 264
Call Invocation Format . . . . . . . . . 264
Parameters . . . . . . . . . . . . . 264
Return Codes . . . . . . . . . . . . 265
Example . . . . . . . . . . . . . . 265

TBVCLEAR – Clear Table Variables . . . . . . 265
Command Invocation Format . . . . . . . 265
Call Invocation Format . . . . . . . . . 265
Parameters . . . . . . . . . . . . . 265
Return Codes . . . . . . . . . . . . 266
Example . . . . . . . . . . . . . . 266

TRANS – Translate CCSID Data . . . . . . . 266
Command Invocation Format . . . . . . . 266
Call Invocation Format . . . . . . . . . 266
Parameters . . . . . . . . . . . . . 267
Return codes . . . . . . . . . . . . 267

VCOPY – Create a Copy of a Variable . . . . . 267
Command Invocation Format . . . . . . . 268
Call Invocation Format . . . . . . . . . 268
Parameters . . . . . . . . . . . . . 268

Contents vii



Return Codes . . . . . . . . . . . . 269
Example . . . . . . . . . . . . . . 269

VDEFINE – Define Function Variables . . . . . 269
Exit Routine . . . . . . . . . . . . . 270

VDELETE – Remove a Definition of Function
Variables . . . . . . . . . . . . . . . 279

Command Invocation Format . . . . . . . 279
Call Invocation Format . . . . . . . . . 279
Parameters . . . . . . . . . . . . . 279
Return Codes . . . . . . . . . . . . 279
Example . . . . . . . . . . . . . . 279

VERASE – Remove Variables from Shared or
Profile Pool . . . . . . . . . . . . . . 279

Command Invocation Format . . . . . . . 279
Call Invocation Format . . . . . . . . . 280
Parameters . . . . . . . . . . . . . 280
Return Codes . . . . . . . . . . . . 280
Example . . . . . . . . . . . . . . 281

VGET – Retrieve Variables from a Pool or Profile 281
Command Invocation Format . . . . . . . 281
Call Invocation Format . . . . . . . . . 281
Parameters . . . . . . . . . . . . . 281
Return Codes . . . . . . . . . . . . 282
Example . . . . . . . . . . . . . . 282

VIEW – View a Data Set. . . . . . . . . . 282
Command Invocation Format . . . . . . . 284
Call Invocation Format . . . . . . . . . 285
Parameters . . . . . . . . . . . . . 285
Return Codes . . . . . . . . . . . . 287
Example 1 . . . . . . . . . . . . . 288
Example 2 . . . . . . . . . . . . . 288
Command Invocation . . . . . . . . . 288

VIIF – View Interface . . . . . . . . . . . 289
Command Invocation Format . . . . . . . 289
Call Invocation Format . . . . . . . . . 289
Parameters . . . . . . . . . . . . . 290
Dialog-Supplied Routines . . . . . . . . 292
Read Routine . . . . . . . . . . . . 292
Command Routine . . . . . . . . . . 292
Return Codes . . . . . . . . . . . . 293
Read Routine . . . . . . . . . . . . 293
Command Routine Return Codes. . . . . . 293
VIIF Service Return Codes . . . . . . . . 293

Example . . . . . . . . . . . . . . 293
VMASK – Mask and Edit Processing . . . . . 294

VMASK Call Invocation . . . . . . . . . 294
Parameters . . . . . . . . . . . . . 295
Return Codes . . . . . . . . . . . . 297
Example . . . . . . . . . . . . . . 297
The VEDIT Statement . . . . . . . . . 297

VPUT – Update Variables in the Shared or Profile
Pool . . . . . . . . . . . . . . . . 297

Command Invocation Format . . . . . . . 297
Call Invocation Format . . . . . . . . . 297
Parameters . . . . . . . . . . . . . 298
Return Codes . . . . . . . . . . . . 298
Example . . . . . . . . . . . . . . 298

VREPLACE – Replace a Variable . . . . . . . 299
Command Invocation Format . . . . . . . 299
Call Invocation Format . . . . . . . . . 299
Parameters . . . . . . . . . . . . . 299
Return Codes . . . . . . . . . . . . 299
Example . . . . . . . . . . . . . . 299

VRESET – Reset Function Variables . . . . . . 300
Command Invocation Format . . . . . . . 300
Call Invocation Format . . . . . . . . . 300
Return Codes . . . . . . . . . . . . 300
Example . . . . . . . . . . . . . . 300

WSCON — Connect to a Workstation . . . . . 300
Command Invocation Format . . . . . . . 300
Call Invocation Format . . . . . . . . . 300
Parameters . . . . . . . . . . . . . 301
Return Codes . . . . . . . . . . . . 302
Example . . . . . . . . . . . . . . 303

WSDISCON — Disconnect from a Workstation . . 303
Command Invocation Format . . . . . . . 303
Call Invocation Format . . . . . . . . . 303
Parameters . . . . . . . . . . . . . 303
Return Codes . . . . . . . . . . . . 304
Usage Notes. . . . . . . . . . . . . 304

Notices . . . . . . . . . . . . . . 307
Programming Interface Information . . . . . . 308
Trademarks . . . . . . . . . . . . . . 308

Index . . . . . . . . . . . . . . . 311

viii z/OS V1R2.0 ISPF Services Guide



Figures

1. Panel with an Action Bar Pull-Down Menu xxvii
2. Pop-Up Selected from an Action Bar

Pull-Down . . . . . . . . . . . . xxviii
3. Panel with an Action Bar and

Point-and-Shoot Fields . . . . . . . . xxviii
4. An Unavailable Choice on a Pull-Down xxix
5. Multiple Pop-up Windows . . . . . . . 23
6. ISPLIBD - all LIBDEF definitions . . . . . 84
7. ISPLIBD ISPPLIB - ISPPLIB LIBDEF definition 84
8. ISPLIBD ISPPLIB - ISPPLIB LIBDEF stacked

definition . . . . . . . . . . . . . 85

9. Variable Model Lines – Panel Definition 221
10. Variable Model Lines – Display 1 . . . . . 222
11. (Part 1 of 2). Variable Model Lines – Display

1 . . . . . . . . . . . . . . . . 222
12. (Part 2 of 2). Variable Model Lines – Display

2 . . . . . . . . . . . . . . . . 223
13. Five Rows in Table TAB1 . . . . . . . 225
14. Table TAB1 as Displayed Using Panel PAN1 226
15. Table Display Panel Definition PAN1 226

© Copyright IBM Corp. 1980, 2001 ix



x z/OS V1R2.0 ISPF Services Guide



Preface

This book describes how to use ISPF dialog management component (DM) services
and Program Development Facility component (PDF) services. Programmers who
develop applications with ISPF can use the services described in this publication to
develop dialogs from programs or command procedures.

Who Should Use This Book?
This book is for application programmers who develop dialogs using ISPF. Users
should be familiar with coding in CLIST, REXX, or any of the other programming
or command procedure languages supported by ISPF in the MVS environment.

What Is in This Book?
This book contains two chapters.

“Chapter 1. Introduction to ISPF Services” on page 1 describes how to invoke ISPF
services, provides an explanation of various service return codes, and lists and
summarizes all of the services described in this book. In previous releases of the
product, the information in this chapter was contained in the ISPF Dialog
Management Guide and Reference and the ISPF/PDF Guide and Reference

“Chapter 2. Description of the ISPF Services” on page 21 contains the following
information about each of the ISPF services:
v A description of the function and operation of the service. This description also

refers to other services that can be used with this service.
v The syntax used to code the service, showing both the command procedure

format and the call format.
v A description of any required or optional keywords or parameters.
v A description of the error codes returned by the service.
v Examples of the how the service is used to develop dialogs.

The services are listed in alphabetical order.

© Copyright IBM Corp. 1980, 2001 xi



xii z/OS V1R2.0 ISPF Services Guide



Summary of Changes

z/OS V1R2.0 ISPF contains the following changes and enhancements:
v ISPF Product and Library Changes
v ISPF Dialog Manager Component Changes (including DTL changes)
v ISPF PDF Component Changes
v ISPF SCLM Component Changes
v ISPF Client/Server Component Changes

ISPF Product Changes
Changes to the ZENVIR variable. Characters 1 through 8 contain the product name
and sequence number in the format ISPF x.y, where x.y indicates:
v <= 4.2 means the version.release of ISPF
v = 4.3 means ISPF for OS/390 release 2
v = 4.4 means ISPF 4.2.1 and ISPF for OS/390 release 3
v = 4.5 means ISPF for OS/390 Version 2 Release 5.0
v = 4.8 means ISPF for OS/390 Version 2 Release 8.0
v = 5.0 means ISPF for OS/390 Version 2 Release 10.0
v OR
v = 5.0 means ISPF for z/OS Version 1 Release 1.0
v = 5.2 means ISPF for z/OS Version 1 Release 2.0

The ZENVIR variable is used by IBM personnel for internal purposes. The x.y
numbers DO NOT directly correlate to an ISPF release number in all cases. For
example, as shown above, a ZENVIR value of 4.3 DOES NOT mean ISPF Version 4
Release 3. NO stand-alone version of ISPF exists above ISPF Version 4 Release 2
Modification 1.

The ZOS390RL variable contains the ISPF release on your system.

The ZISPFOS system variable contains the level of ISPF code that is running as
part of the operating system release on your system. This might or might not
match ZOS390RL. For this release, the variable contains ISPF for z/OS 01.02.00.

New system variables:

ZDAYOFWK
The day of the week.

The ISRDDN utility is now documented in the ISPF User’s Guide.

ISPF DM Component Changes
The DM component of ISPF includes the following new functions and
enhancements:
v Add support for ″VER(&variable,IPADDR4)″.
v Add the NOSETMSG parameter to the CONTROL Service.
v Add the LFORMAT parameter to the VDEFINE Service to allow defining like

format variables in a list.
v Change tutorial processing to eliminate the ″End of data″ message on scrollable

area panels that display the entire scrollable area on the screen (no More: + - is
displayed). This change eliminates the extra enter the user had to execute before
continuing to the next panel.

© Copyright IBM Corp. 1980, 2001 xiii

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|

|
|

|

|

|
|
|
|
|
|
|
|
|
|



v Issue a TSO line message when a help panel is not found and continue the
dialog. Previously ISPF issued a severe error message when a help panel could
not be found.

v Display a message indicating a message is not found when running in Dialog
Test and allow the dialog to continue.

v Add support for extended SBCS and DBCS CCSIDs:
– 1159 Traditional Chinese
– 1364 Korean
– 1371 Traditional Chinese
– 1388 Simplified Chinese
– 1390 Japanese
– 1399 Japanese

v Add new Z variables to support 5 character code pages and character sets,
ZTERMCP5 and ZTERMCS5 respectively.

v Add new variable ZDAYOFWK to show the day of the week.
v Enhance the Reflist function of TEST option 7.6 to allow better list management.
v Enhance Locate and Find for Dialog Test Variables (option 7.3).
v A new exec called ISPCMDTB to convert ISPF command tables to DTL.
v A new Configuration Table variable to allow SCROLL defaults.
v A new Configuration Table variable to allow STATUS AREA defaults.

ISPDTLC enhancements:

ISPDTLC changes include new invocation options, new tags, and new tag.
attributes as ISPF extensions to the Dialog Tag Language

General improvements:
v New invocation options:

– no new invocation options in this release
v New tags:

– DLDIV, DTDIV, DTHDIV for dividers within the DL tag
– PLDIV, PTDIV for dividers within the PARML tag

v Replication added to predefined entities. For example, &GTSYM(5); will create
the string ’>>>>>’ in the substituted text.

v National language text strings are now accessible as entities. For example,
&command; will create the string ’Command’ or its translated equivalent in the
substituted text.

v New ENTITY keywords COPIES, X2C and ATTR.
v New macro tag default initialization processing syntax.

<?dummy ?var=value>

v New Predefined ENTITY keywords cmdpmt (&cmdpmt;) and rptr (&rptr;).

New or changed tag attributes:

Tag name Attribute update

CHECKI Add support for ″VER(&variable, IPADDR4)″

COMPOPT Add ADD.

xiv z/OS V1R2.0 ISPF Services Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|

|

|

|
|

|
|
|

|

|

|

|

|

|||

||

||



Tag name Attribute update

DL Add FORMAT.

Support multiple DT tags for each DD tag.

Change TSIZE to support multiple values.

Each TSIZE value implies a DT tag.

DT Add FORMAT, NOSKIP.

DTAFLD Add AUTOTYPE, AUTOVOL, AUTODMEM.

HELP Add ZUP, ZCONT.

Hn Add COMPACT.

HP Add INTENSE.

NOTE Add NOSKIP.

NT Add NOSKIP.

PANEL Add ZUP, ZCONT, AUTONRET, AUTOTCMD.

PARML Add FORMAT.

Support multiple PT tags for each PD tag.

Change TSIZE to support multiple values.

Each TSIZE value implies a PT tag.

PT Add FORMAT, SKIP.

SELFLD Add SELCHECK.

Support INIT=init-value for single-choice selection fields.

ISPF PDF Component Changes
The ISPF PDF component contains the following new functions and enhancements:
v A MEMBER command has been added to data set list (option 3.4) to allow the

partitioned data sets in the list to be searched for a specific member.
v When the EDIT service is specified with an initial macro, parameters can now be

specified for the initial macro.
v A FIND command has been added to member list to allow a string to be

searched for in any of the displayed statistics.
v A SRCHFOR command has been added to data set list to allow SuperC to be

invoked to search the listed data sets for strings.
v Move/Copy will now dynamically calculate the sized for the IEBCOPY SYSUT3

and SYSUT4 data sets.
v A QUERYENQ service has been added to retrieve ENQ information about a data

set in use.
v LMF has been removed from the ISPF product.
v A new SuperC option FINDALL has been added to specify that all strings must

be found to issue a ″strings found″ return code.
v LMPRINT will now allow the INDEX parameter to be specified for a record

format U data set.
v Foreground and Batch now support the z/OS C/C++ compiler.

Summary of Changes xv

||

||

|

|

|

||

||

||

||

||

||

||

||

||

|

|

|

||

||

||
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|



v A new AUTOTYPE command can be set to a PFKEY to retrieve a data set name
or pattern entered on a panel based on data sets that start with that partial
name.

v Data sets with an LRECL less than 10 bytes can be edited or viewed.
v The Edit CUT and PASTE command defaults have been added to the ISPF

Configuration Table.
v The Edit CUT and PASTE default behaviors have been modified to use CUT

REPLACE and PASTE KEEP.
v The BARRIER keyword has been added to the SELECT for Edit macros.
v A program called ISREMSPY that can be invoked from an Edit macro to display

the current Edit data.
v The Edit macro commands CURSOR, LINENUM and DISPLAY_LINES can

retrieve line numbers greater than 999999.

ISPF SCLM Component Changes
The ISPF SCLM component contains the following new functions and
enhancements:
v Several enhancements to the Library Utility:

– A member action to initiate Promotion on a member.
– REFRESH command to update the member list contents.
– HIER ON|OFF command to switch between full hierarchy view and single

group view.
– Edit action can create a new member when entered on the command line.
– Ability to select deletion of accounting data or build map only.

v New FLMLRBLD macro to select automated rebuild for members with a
specified language on promotion to listed groups.

v Improved edit models for SCLM services.
v VOL keyword on the FLMCPYLB and FLMSYSLB macros allowing reference to

uncatalogued data sets.
v VIO keyword on the FLMALLOC macro to override the SCLM-calculated

default unit of DASD or VIO for temporary data sets.
v Supplied parsers and translators are all loaded RMODE(31).

ISPF Client/Server Component Changes
The ISPF Client/Server Component enables a panel to be displayed unchanged
(except for panels with graphic areas) at a workstation using the native display
function of the operating system of the workstation. ISPF manuals call this
″running in GUI mode.″

There are no changes to the ISPF Client/Server for this release.

ISPF User Interface Considerations
Many changes have been made to the ISPF Version 4 user interface to conform to
CUA guidelines. If you prefer to change the interface to look and act more like the
Version 3 interface, you can do the following:
v Use the CUAATR command to change the screen colors
v Use the ISPF Settings panel to specify that the TAB or HOME keys position the

cursor to the command line rather than to the first action bar item

xvi z/OS V1R2.0 ISPF Services Guide

|
|
|

|

|
|

|
|

|

|
|

|
|

|
|

|
|

|

|

|

|
|

|

|

|
|

|

|
|

|
|

|

|



v Set the command line to the top of the screen by deselecting Command line at
bottom on the ISPF Settings panel

v Set the primary keys to F13–24 by selecting 2 for Primary range on the Tailor
Function Key Definition Display panel

v Use the KEYLIST OFF command to turn keylists off
v Use the PSCOLOR command to change point-and-shoot fields to blue.
v Change the DFLTCOLR field in the PDF configuration table ISRCONFG to

disable action bars and or edit highlighting

ISPF Migration Considerations
When migrating to OS/390 V2R8.0 or higher for the first time, you must convert
your ISPF customization to the new format. Refer to the section entitled The ISPF
Configuration Table in the ISPF Planning and Customizing manual.

When migrating from one version of ISPF to another, you must be sure to
reassemble and re-link the SCLM project definition.

Note: If you are migrating to z/OS V1R2.0 from OS/390 V2R10.0, there are no
migration actions necessary. If you are migrating to z/OS V1R2.0 from a
prior release of OS/390, follow the migration actions for OS/390 V2R10.0.

ISPF Profiles
Major changes were made to the ISPF profiles for ISPF Version 4.2 and OS/390
Version 1 Release 1.0 ISPF. The profiles for ISPF Version 3 and the profiles for
OS/390 ISPF are not compatible. If you are moving back and forth between an
ISPF Version 3 system and OS/390 V1R1.0 or higher system, you must run with
separate profiles. Profiles for OS/390 V1R1.0 and higher are compatible with each
other.

Year 2000 Support for ISPF
ISPF is fully capable of using dates for the year 2000 and beyond. All of your
existing applications should continue to run (some may need minor changes, as
explained below) when the year 2000 comes. The base support for the year 2000
was added to OS/390 Version 1 Release 2.0, but the same level of support is
available for ISPF Version 3.5, ISPF Version 4, and OS/390 Version 1 Release 1.0 as
well. To get support for the earlier versions, be sure that your system has the
correct APARs installed. All ISPF APARs that add or correct function relating to the
year 2000 contain the YR2000 identifier in the APAR text. You should search for
these APARs to ensure you have all the function available.

What function is included?
v ISPF Dialog variable ZSTDYEAR now correctly shows the year for dates past

1999. Earlier versions always showed the first 2 characters of the year as 19.
v A new ISPF dialog variable (ZJ4DATE) is available for Julian dates with a 4–digit

year.
v An ISPF Configuration Table field enables PDF to interpret 2 character year

dates as either a 19xx or 20xx date. The default value is 65. Any 2-character year
date whose year is less than or equal to this value is considered a 20xx date,
anything greater than this value is considered 19xx. To see what value has been
set by the ISPF Configuration Table, use the new ZSWIND variable.

v New parameters in the LMMSTATS service (CREATED4 and MODDATE4) for
specifying 4-character year dates. All existing parameters still exist and you can

Summary of Changes xvii



continue to use them. If both the 2-character year date parameters (CREATED
and MODDATE) and the 4-character year date parameters (CREATED4 and
MODDATE4) are specified, the 2-character versions are used.

v Dialog variables ZLC4DATE and ZLM4DATE have been added.
– You can set them before making an LMMREP or LMMADD call. Do this to

specify a 4-character created or last modified date to set in the ISPF statistics.
– They are set by LMMFIND, LMMLIST and LMMDISP to the current value of

the created and last modified dates in the ISPF statistics.

What might need to change? Some minor changes to your existing ISPF dialogs
might be necessary, especially in ISPF dialogs that use the Library Access Services
to manipulate ISPF member statistics.
v For those services that accept both 4-character year dates and 2-character year

dates, you can specify one or the other. If you specify both, the 2-character year
date is used to avoid affecting existing dialogs. When the 2-character year date is
used, the configuration table field mentioned above is used to determine
whether the date should be interpreted as 19xx or 20xx.

v ISPF will not necessarily show 4-character dates in all circumstances but it will
process them correctly. For example, a member list might only display
2-character year dates but will sort those dates in the proper order.

v SCLM stores dates past the year 1999 in a new internal format. If an accounting
file contains dates in this new format, it cannot be processed by a system
without year 2000 support. Accounting files without dates past 1999 can be
processed with or without the year 2000 support.

v LMF has been removed from the ISPF product. For information about how to
convert from LMF to SCLM refer to the ISPF Planning and Customizing
manual.

xviii z/OS V1R2.0 ISPF Services Guide

|
|
|



What’s in the z/OS V1R2.0 ISPF library?

You can order the ISPF books using the numbers provided below.

z/OS V1R2.0 ISPF

Title Order Number

z/OS V1R2.0 ISPF Dialog Tag Language Guide and Reference SC34-4824-01

z/OS V1R2.0 ISPF Planning and Customizing GC34-4814-01

z/OS V1R2.0 ISPF User’s Guide Volume I SC34-4822-01

z/OS V1R2.0 ISPF User’s Guide Volume II SC34-4823-01

z/OS V1R2.0 ISPF Services Guide SC34-4819-01

z/OS V1R2.0 ISPF Dialog Developer’s Guide and Reference SC34-4821-01

z/OS V1R2.0 ISPF Reference Summary SC34-4816-01

z/OS V1R2.0 ISPF Edit and Edit Macros SC34-4820-01

z/OS V1R1.0 ISPF Library Management Facility SC34-4825-01

z/OS V1R2.0 ISPF Messages and Codes SC34-4815-01

z/OS V1R2.0 ISPF Software Configuration and Library Manager Project
Manager’s and Developer’s Guide

SC34-4817–01

z/OS V1R2.0 ISPF Software Configuration and Library Manager
Reference

SC34-4818-01

Entire library Bill of Forms SBOF-8570

© Copyright IBM Corp. 1980, 2001 xix



xx z/OS V1R2.0 ISPF Services Guide



Elements and Features in z/OS

You can use the following table to see the relationship of a product you are
familiar with and how it is referred to in z/OS Version 1 Release 2.0. z/OS V1R2.0
is made up of elements and features that contain function at or beyond the release
level of the products listed in the following table. The table gives the name and
level of each product on which a z/OS element or feature is based, identifies the
z/OS name of the element or feature, and indicates whether it is part of the base
or optional. For more compatibility information about z/OS elements see z/OS
Planning for Installation, GC28-1726

Product Name and Level Name in z/OS Base or Optional

BookManager BUILD/MVS V1R3 BookManager BUILD optional

BookManager READ/MVS V1R3 BookManager READ base

MVS/Bulk Data Transfer V2 Bulk Data Transfer (BDT) base

MVS/Bulk Data Transfer File-to-File V2 Bulk Data Transfer (BDT) File-to-File optional

MVS/Bulk Data Transfer SNA NJE V2 Bulk Data Transfer (BDT) SNA NJE optional

IBM OS/390 C/C++ V1R2 C/C++ optional

DFSMSdfp V1R3 DFSMSdfp base

DFSMSdss DFSMSdss optional

DFSMShsm DFSMShsm optional

DFSMSrmm DFSMSrmm optional

DFSMS/MVS Network File System V1R3 DFSMS/MVS Network File System base

DFSORT R13 DFSORT optional

EREP MVS V3R5 EREP base

FFST/MVS V1R2 FFST/MVS base

GDDM/MVS V3R2
v GDDM-OS/2 LINK
v GDDM-PCLK

GDDM base

GDDM-PGF V2R1.3 GDDM-PGF optional

GDDM-REXX/MVS V3R2 GDDM-REXX optional

IBM High Level Assembler for MVS & VM
& VSE V1R2

High Level Assembler base

IBM High Level Assembler Toolkit High Level Assembler Toolkit optional

ICKDSF R16 ICKDSF base

ISPF ISPF base

Language Environment for MVS & VM V1R5 Language Environment base

Language Environment V1R5 Data
Decryption

Language Environment Data Decryption optional

© Copyright IBM Corp. 1980, 2001 xxi

|
|
|
|
|
|
|
|



Product Name and Level Name in z/OS Base or Optional

MVS/ESA SP V5R2.2

BCP

ESCON Director Support

Hardware Configuration Definition
(HCD)

JES2 V5R2.0

JES3 V5R2.1

LANRES/MVS V1R3.1

IBM LAN Server for MVS V1R1

MICR/OCR Support

OS/390 UNIX System Services

OS/390 UNIX Application Services

OS/390 UNIX DCE Base Services (OSF
DCE level 1.1)

OS/390 UNIX DCE Distributed File
Services (DFS) (OSF DCE level 1.1)

OS/390 UNIX DCE User Data Privacy

SOMobjects Application Development
Environment (ADE) V1R1

SOMobjects Runtime Library (RTL)

SOMobjects service classes

BCP or MVS

ESCON Director Support

Hardware Configuration Definition
(HCD)

JES2

JES3

LANRES

LAN Server

MICR/OCR Support

OS/390 UNIX System Services

OS/390 UNIX Application Services

OS/390 UNIX DCE Base Services

OS/390 UNIX DCE Distributed File
Services (DFS)

OS/390 UNIX DCE User Data Privacy

SOMobjects Application Development
Environment (ADE)

SOMobjects Runtime Library (RTL)

SOMobjects service classes

base

base

base

base

optional

base

base

base

base

base

base

base

optional

optional

base

base

Open Systems Adapter Support Facility
(OSA/SF) R1

Open Systems Adapter Support Facility
(OSA/SF)

base

MVS/ESA RMF V5R2 RMF optional

OS/390 Security Server Resource Access Control Facility (RACF)
v DCE Security Server
v OS/390 Firewall Technologies
v Lightweight Directory Access Protocol

(LDAP) Client and Server
v Open Cryptographic Enhanced Plug-ins

(OCEP)

optional

SDSF V1R6 SDSF optional

SMP/E SMP/E base

Softcopy Print base

SystemView for MVS Base SystemView for MVS Base base

IBM TCP/IP V3R1

v TCP/IP CICS Sockets

v TCP/IP IMS Sockets

v TCP/IP Kerberos

v TCP/IP Network Print Facility (NPF)

v TCP/IP OS/390 Communications Service
IP Applications

v TCP/IP OS/2 Offload

TCP/IP

v TCP/IP CICS Sockets

v TCP/IP IMS Sockets

v TCP/IP Kerberos

v TCP/IP Network Print Facility (NPF)

v TCP/IP OS/390 Communications Service
IP Applications

v TCP/IP OS/2 Offload

base

v optional

v optional

v optional

v optional

v optional

v optional

TIOC R1 TIOC base

Time Sharing Option Extensions (TSO/E)
V2R5

TSO/E base

xxii z/OS V1R2.0 ISPF Services Guide



Product Name and Level Name in z/OS Base or Optional

VisualLift for MVS V1R1.1 v VisualLift Run-Time Environment (RTE)
v VisualLift Application Development

Environment (ADE)

v base
v optional

VTAM V4R3 with the AnyNet feature VTAM base

3270 PC File Transfer Program V1R1.1 3270 PC File Transfer Program base

Elements and Features in z/OS xxiii



xxiv z/OS V1R2.0 ISPF Services Guide



The ISPF User Interface

ISPF provides an action bar-driven interface that exploits many of the usability
features of Common User Access (CUA) interfaces. Refer to Object-Oriented Interface
Design: IBM Common User Access Guidelines for additional information.

The panels look different than in Version 3: all screens are in mixed case, and most
have action bars at the top. These action bars give you a new way to move around
in the product as well as access to command nesting. Command nesting allows
you to suspend an activity while you perform a new one rather than having to end
a function to perform another function.

This chapter primarily explains the action bar-driven interface and the use of
ISPF’s graphical user interface (GUI).

Some Terms You Should Know
The following terms are used in this book:

action bar. The area at the top of an ISPF panel that contains choices that give you access to actions available on
that panel. When you select an action bar choice, ISPF displays a pull-down menu.

pull-down menu. A list of numbered choices extending from the selection you made on the action bar. The action
bar selection is highlighted; for example, Utilities in Figure 1 on page xxvii appears highlighted on your screen. You
can select an action either by typing in its number and pressing Enter or by selecting the action with your cursor.
ISPF displays the requested panel. If your choice contains an ellipsis (...), ISPF displays a pop-up window. When you
exit this panel or pop-up, ISPF closes the pull-down and returns you to the panel from which you made the initial
action bar selection.

ellipsis. Three dots that follow a pull-down choice. When you select a choice that contains an ellipsis, ISPF displays
a pop-up window.

pop-up window. A bordered temporary window that displays over another panel.

modal pop-up window. A type of window that requires you to interact with the panel in the pop-up before
continuing. This includes cancelling the window or supplying information requested.

modeless pop-up window. A type of window that allows you to interact with the dialog that produced the pop-up
before interacting with the pop-up itself.

point-and-shoot text. Text on a screen that is cursor-sensitive. See “Point-and-Shoot Text Fields” on page xxx for
more information.

push button. A rectangle with text inside. Push buttons are used in windows for actions that occur immediately
when the push button is selected (available only when you are running in GUI mode).

function key. In previous releases of ISPF, a programmed function (PF) key. This is a change in terminology only.

select. In conjunction with point-and-shoot text fields and action bar choices, this means moving the cursor to a
field and simulating Enter.

mnemonics. Action bar choices can be defined with a underscored letter in the action bar choice text. In host mode
you can access the action bar choice with the ACTIONS command and parameter ’x’, where ’x’ is the underscored
letter in the action bar choice text. In GUI mode you can use a hot key to access a choice on the action bar; that is,
you can press the ALT key in combination with the letter that is underscored in the action bar choice text.

© Copyright IBM Corp. 1980, 2001 xxv



How to Navigate in ISPF without Using Action Bars
If you use a non-programmable terminal to access z/OS V1R2.0 ISPF and you do
not want to take advantage of the command nesting function, you can make
selections the same way you always have: by typing in a selection number and
pressing Enter.

How to Navigate in ISPF Using the Action Bar Interface
Most ISPF panels have action bars at the top; the choices appear on the screen in
white by default. Many panels also have point-and-shoot text fields, which appear
in turquoise by default. The panel shown in Figure 3 on page xxviii has both.

Action Bars
Action bars give you another way to move through ISPF. If the cursor is located
somewhere on the panel, there are several ways to move it to the action bar:
v Use the cursor movement keys to manually place the cursor on an action bar

choice.
v Type ACTIONS on the command line and press Enter to move the cursor to the

first action bar choice.
v Press F10 (Actions) or the Home key to move the cursor to the first action bar

choice.
If mnemonics are defined for action bar choices, you can:
– In 3270 mode, on the command line, type ACTIONS and the mnemonic letter

that corresponds to an underscored letter in the action bar choice text. This
results in the display of the pull-down menu for that action bar choice.

– In 3270 mode, on the command line enter the mnemonic letter that
corresponds to an underscored letter in the action bar choice text, and press
the function key assigned to the ACTIONS command. This results in the
display of the pull-down menu for that action bar choice.

– In GUI mode, you can use a hot key to access a choice on an action bar or on
a pull-down menu; that is, you can press the ALT key in combination with
the mnemonic letter that is underscored in the choice text to activate the text.

Use the tab key to move the cursor among the action bar choices. If you are
running in GUI mode, use the right and left cursor keys.

Notes:

1. ISPF does not provide a mouse emulator program. This book uses select in
conjunction with point-and-shoot text fields and action bar choices to mean
moving the cursor to a field and simulating Enter.

Note: Some users program their mouse emulators as follows:
v Mouse button 1 – to position the cursor to the pointer and simulate

Enter
v Mouse button 2 – to simulate F12 (Cancel).

2. If you want the Home key to position the cursor at the first input field on an
ISPF panel, type SETTINGS on any command line and press Enter to display the
ISPF Settings panel. Deselect the Tab to action bar choices option.

3. If you are running in GUI mode, the Home key takes you to the beginning of
the current field.

The ISPF User Interface

xxvi z/OS V1R2.0 ISPF Services Guide



When you select one of the choices on the action bar, ISPF displays a pull-down
menu. Figure 1 shows the pull-down menu displayed when you select Utilities on
the ISPF Primary Option Menu action bar.

To select a choice from the Utilities pull-down menu, type its number in the entry
field (underlined) and press Enter or select the choice. To cancel a pull-down menu
without making a selection, press F12 (Cancel). For example, if you select choice
9, ISPF displays the Command Table Utility pop-up, as shown in Figure 2 on
page xxviii.

Note: If you entered a command on the command line prior to selecting an action
bar choice, the command is processed, and the pull-down menu is never
displayed. The CANCEL, END, and RETURN commands are exceptions.
These three commands are not processed and the cursor is repositioned to
the first input field in the panel body. If there is no input field, the cursor is
repositioned under the action bar area. If you are running in GUI mode and
select an action bar choice, any existing command on the command line is
ignored.

�1� The selected action bar choice is highlighted.

Figure 1. Panel with an Action Bar Pull-Down Menu

The ISPF User Interface

The ISPF User Interface xxvii



Action Bar Choices
The action bar choices available vary from panel to panel, as do the choices
available from their pull-downs. However, Menu and Utilities are basic action bar
choices, and the choices on their pull-down menus are always the same.

Figure 2. Pop-Up Selected from an Action Bar Pull-Down

�1� Action bar. You can select any of the action bar choices and display a pull-down.

�2� Options. The fields in this column are point-and-shoot text fields.

�3� Dynamic status area. You can specify what you want to be displayed in this area.

Figure 3. Panel with an Action Bar and Point-and-Shoot Fields

The ISPF User Interface

xxviii z/OS V1R2.0 ISPF Services Guide



Menu Action Bar Choice
The following choices are available from the Menu pull-down:

Settings Displays the ISPF Settings panel

View Displays the View Entry panel

Edit Displays the Edit Entry panel

ISPF Command Shell Displays the ISPF Command Shell panel

Dialog Test... Displays the Dialog Test Primary Option panel

Other IBM Products... Displays the Additional IBM Program
Development Products panel

SCLM Displays the SCLM Main Menu

ISPF Workplace Displays the Workplace entry panel

Status Area... Displays the ISPF Status panel

Exit Exits ISPF.

Note: If a choice displays in blue (the default) with an asterisk as the first digit of
the selection number (if you are running in GUI mode, the choice will be
grayed), the choice is unavailable for one of the following reasons:
v Recursive entry is not permitted here
v The choice is the current state; for example, RefMode is currently set to

Retrieve in Figure 4.

Utilities Action Bar Choice
The following choices are available from the Utilities pull-down:
Library Displays the Library Utility panel
Data Set Displays the Data Set Utility panel
Move/Copy Displays the Move/Copy Utility panel

Figure 4. An Unavailable Choice on a Pull-Down

The ISPF User Interface

The ISPF User Interface xxix



Data Set List Displays the Data Set List Options panel
Reset Statistics Displays the Reset ISPF Statistics panel
Hardcopy Displays the Hardcopy Utility panel
Download... Displays the panel that enables you to download

workstation clients and other files from the host.
Outlist Displays the Outlist Utility panel
Commands... Displays the Command Table Utility panel
Reserved Reserved for future use by ISPF; an unavailable

choice
Format Displays the Format Specification panel
SuperC Displays the SuperC Utility panel
SuperCE Displays the SuperCE Utility panel
Search-for Displays the Search-For Utility panel.
Search-forE Displays the Search-ForE Utility panel.

Point-and-Shoot Text Fields
Point-and-shoot text fields are cursor-sensitive; if you select a field, the action
described in that field is performed. For example, if you select Option 0, Settings,
in Figure 3 on page xxviii, ISPF displays the ISPF Settings panel.

Note: If you have entered a command on the command line, this command is
processed before any point-and-shoot command unless you are running in
GUI mode.

The cursor-sensitive portion of a field often extends past the field name. Until you
are familiar with this new feature of ISPF, you might want to display these fields
in reverse video (use the PSCOLOR command to set Highlight to REVERSE).

Note: You can use the Tab key to position the cursor to point-and-shoot fields by
selecting the Tab to point-and-shoot fields option on the ISPF Settings panel
(Option 0).

Function Keys
ISPF uses CUA-compliant definitions for function keys F1–F12 (except inside the
Edit function). F13–F24 are the same as in ISPF Version 3. By default you see the
CUA definitions because your Primary range field is set to 1 (Lower - 1 to 12).

To use non-CUA-compliant keys, select the Tailor function key display choice
from the Function keys pull-down on the ISPF Settings (option 0) panel action bar.
On the Tailor Function Key Definition Display panel, specify 2 (Upper - 13 to 24)
in the Primary range field.

The following function keys help you navigate in ISPF:

F1 Help. Displays Help information. If you press F1 (and it is set to Help)
after ISPF displays a short message, a long message displays in a pop-up
window.

F2 Split. Divides the screen into two logical screens separated by a horizontal
line or changes the location of the horizontal line.

Note: If you are running in GUI mode, each logical screen displays in a
separate window.

F3 Exit (from a pull-down). Exits the panel underneath a pull-down.

F3 End. Ends the current function.

The ISPF User Interface

xxx z/OS V1R2.0 ISPF Services Guide



F7 Backward. Moves the screen up the scroll amount.

F8 Forward. Moves the screen down the scroll amount.

F9 Swap. Moves the cursor to where it was previously positioned on the
other logical screen of a split-screen pair.

F10 Actions. Moves the cursor to the action bar. If you press F10 a second time,
the cursor moves to the command line.

F12 Cancel. Issues the Cancel command. Use this command to remove a
pull-down menu if you do not want to make a selection. F12 also moves
the cursor from the action bar to the Option ==> field on the ISPF Primary
Option Menu. See ISPF Dialog Developer’s Guide and Reference for
cursor-positioning rules.

F16 Return. Returns you to the ISPF Primary Option Menu or to the display
from which you entered a nested dialog. RETURN is an ISPF system
command.

Selection Fields
z/OS V1R2.0 ISPF uses the following CUA-compliant conventions for selection
fields:

A single period (.)
Member lists that use a single period in the selection field recognize only a
single selection. For example, within the Edit function you see this on your
screen:
│EDIT USER1.PRIVATE.TEST ROW 00001 of 00002 │
│ Name VV MM Created Changed Size Init Mod ID │
│ . MEM1 01.00 94/05/12 94/07/22 40 0 0 USER1 │
│ . MEM2 01.00 94/05/12 94/07/22 30 0 0 KEENE │

You can select only one member to edit.

A single underscore (_)
Selection fields marked by a single underscore prompt you to use a slash
(/) to select the choice. You may use any non-blank character. For example,
the Panel display CUA mode field on the ISPF Settings panel has a single
underscore for the selection field:
Options

Enter "/" to select option
_ Command line at bottom
_ Panel display CUA mode
_ Long message in pop-up

Note: If you are running in GUI mode, this type of selection field displays
as a check box; that is, a square box with associated text that
represents a choice. When you select a choice, a check mark (in
OS/2) or an X (in Windows) appears in the check box to indicate
that the choice is in effect. You can clear the check box by selecting
the choice again.

An underscored field (____)
Member lists or text fields that use underscores in the selection field
recognize multiple selections. For example, from the Display Data Set List
Option panel, you may select multiple members for print, rename, delete,
edit, browse, or view processing.

The ISPF User Interface

The ISPF User Interface xxxi



Command Nesting
Command nesting allows you to suspend an activity while you perform a new one
rather than having to end a function to perform another function. For example, in
previous versions of ISPF, if you are editing a data set and want to allocate another
data set, you type =3.2 on the command line and press Enter. ISPF ends your edit
session before taking you to the Data Set Utility panel. When you have allocated
the data set and want to return to your edit session, you type =2 and press Enter;
ISPF returns you to the Edit Entry Panel. With z/OS V1R2.0 ISPF, from your edit
session, select the Data set choice from the Utilities pull-down on the Edit panel
action bar. ISPF suspends your edit session and displays the Data Set Utility panel.
When you have allocated the new data set and end the function, z/OS V1R2.0
ISPF returns you directly to your edit session rather than to the Edit Entry Panel.

The ISPF User Interface

xxxii z/OS V1R2.0 ISPF Services Guide



Chapter 1. Introduction to ISPF Services

ISPF services help you develop interactive ISPF applications called dialogs. These
services can make your job easier because they perform many tedious and
repetitious operations. In addition, the ISPF services allow you to start a dialog in
batch mode and let it run in the background while you work with another
application in the foreground.

PDF component services communicate with the dialog through dialog
variables.Thus, you can use PDF component services with DM component services.
For information about DM component services and writing dialogs, refer to the
ISPF Dialog Developer’s Guide and Reference.

You can also use PDF component services within edit macros, or youcan use edit
macros through the EDIT service.For information about writing edit macros, refer
to ISPF Edit and Edit Macros.

Description of the Services
The services are described in alphabetical order and each service description
consists of the following information:

Description A description of the function and operation of the
service. This description also refers to other
services that can be used with this service.

Format The syntax used to code the service, showing
commands and calls.

Parameters A description of any required or optional keywords
or parameters.

Return Codes A description of the codes returned by the service.
For all services, a return code of 12 or higher
implies a severe error. This error is usually a
syntax error, but can be any severe error detected
when using the services.

Examples Sample usage of the services.

For each service, the command procedure or command invocation format is
shown, followed by the call or call invocation format.

The command formats are provided as CLIST or REXX command procedures,
using ISPEXEC.

Call formats are shown in PL/I syntax, although you are not limited to PL/I calls.
For example, “;” ends statements in the formats described. This is a PL/I
convention, but you should use the syntax appropriate for your programming
language. Additional examples, including APL2, C, CLIST, COBOL, FORTRAN,
Pascal, and REXX call formats, can be found in ISPF Examples

© Copyright IBM Corp. 1980, 2001 1



Consider using the Edit model facilities when you code requests for ISPF services.
This will save keying the parts of dialog elements that are constant regardless of
the function in which they are used. See ISPF Edit and Edit Macros for a description
of these facilities.

Notation Conventions
This book uses the following notation conventions to describe the format of the
ISPF services:
v Uppercase commands and their uppercase parameters to show required entry.
v Lowercase parameters to show variables (substitute your values for them).
v Brackets([]) to show optional parameters (required parameters do not have

brackets).
v An OR (|) symbol to show two or more parameters you must select from.
v Stacked parameters to show two or more parameters you can select from.

Note: You can choose one or none. If you choose none, ISPF uses the
underscored parameter.

v Braces ({}) with stacked parameters to show that you must select one.
v Underscores to show defaults.

Using ISPQRY to Test Whether ISPF Is Active
A program can determine if ISPF services are currently available to it through use
of ISPQRY. To test the availability of ISPF, the function issues:

CALL ISPQRY;

There are no parameters associated with the call to ISPQRY. No messages are
written to the terminal. Response from ISPQRY is one of the following return
codes:

0 The services are available to the caller.

20 The services are not available to the caller.

Invoking the ISPF Services
Dialog developers use a command or a call statement to invoke ISPF services from
functions at the point where the service is needed.

Functions coded in a command procedure language invoke ISPF services by means
of the ISPEXEC command. For example:
ISPEXEC DISPLAY PANEL(XYZ)

This example invokes a service to display information on a terminal. A panel
definition named XYZ, prepared by the developer and pre-stored in a panel file,
specifies both the content and the format of the display.

Functions coded in APL2 invoke ISPF services by using ISPEXEC in an APL2
function. For example:
RC ← ISPEXEC 'DISPLAY PANEL(XYZ)'

This example invokes the display service to display information on a terminal by
using panel definition XYZ from the ISPF panel file to control the content and
format of the display.

ISPF Services

2 z/OS V1R2.0 ISPF Services Guide



Functions coded in a programming language other than FORTRAN, Pascal, or
APL2 invoke ISPF services by calling either ISPLINK or ISPEXEC. For example, in
PL/I:
CALL ISPLINK ('DISPLAY ', 'XYZ ');

or alternatively, set BUFLEN to 18, then:
CALL ISPEXEC (BUFLEN, 'DISPLAY PANEL(XYZ)');

This example invokes a service to display panel XYZ. FORTRAN and Pascal use
only 6 characters, such as ISPLNK or ISPEX, in a called module’s name.

Thus, the FORTRAN or Pascal call is in the following format:
lastrc = ISPLNK ('DISPLAY ', 'XYZ ')

or alternatively:
lastrc = ISPEX (18, 'DISPLAY PANEL(XYZ)')

ISPLINK and ISPEXEC can be called from programs coded in any language that
uses standard OS register conventions for call interfaces and the standard
convention for signaling the end of a variable length parameter list. Assembler
programs must include code to implement the standard save area convention.

Load Module Search Order
When you are using STEPLIB to test new maintenance, releases, or versions of
ISPF, and an ISPLLIB is allocated, those data sets allocated to STEPLIB that contain
ISPF load modules except for the SISPSASC data set, should also be allocated to
ISPLLIB. This prevents the possibility of mixed code (production code versus code
to be tested). For more information, refer to the ISPF Dialog Developer’s Guide and
Reference

If you are using the ISPF client/server (ISPF C/S) feature, the SISPSASC data set
must be in STEPLIB or LNKLST. The modules in this data set are not searched for
in ISPLLIB. For more information about SISPSASC refer to the ISPF Planning and
Customizing

Invoking Services from Command Procedures
To invoke ISPF services for a command invocation, use one of the following:
v The ISPEXEC command in a command invocation written in CLIST or REXX
v Option 7.6 of ISPF, the Dialog Services option of the Dialog Test facility.

The following services are not available using the ISPEXEC call from a command
procedure:
GRERROR VCOPY VMASK
GRINIT VDEFINE VREPLACE
GRTERM VDELETE VRESET

These services are available by using the CALL from programs.

The ISPEXEC Interface
The general format for a command invocation is:
ISPEXEC service-name parameter1 parameter2 parameter3 ...

The command invocation statement must be specified in uppercase.

ISPF Services

Chapter 1. Introduction to ISPF Services 3



ISPEXEC Parameter Conventions
service-name

Alphabetic; up to 8 characters long.

parameter1
Positional parameter; required for some services.

parameter2 parameter3 ...
Keyword parameters.They can take either of two forms:
keyword
keyword (value)

Some keyword parameters are required and others are optional, depending on the
service. Optional parameters are enclosed in brackets ([ ]). You can code keyword
parameters in any order, but if you code duplicate or conflicting keywords, ISPF
uses the last instance of the keyword.

Using Command Invocation Variables
You can use a CLIST or REXX variable, in the form of a name preceded by an
ampersand (&), as the service name or as a parameter anywhere within a
statement. Each variable is replaced by its current value before execution of the
ISPEXEC command.Refer to TSO/E Version 2 CLISTs TSO/E REXX/MVS User’s
Guide , and TSO/E REXX/MVS Reference for further information.

Attention Interrupt Handling
When a CLIST command procedure is executing under ISPF, the ATTN statement
in the procedure defines how attention interrupts are to be handled. You can find
information about using attention interrupt exits in the CLIST Implementation and
Reference and the TSO Terminal User’s Guide

Passing Dialog Variables as Parameters
Some ISPF services allow the names of dialog variables to be passed as parameters.
The ISPEXEC interface scans these variables for their values in the ISPF function,
shared, and profile variable pools.Variable names are 8 characters or fewer, with
the exception of FORTRAN and Pascal variable names, which are limited to 6 or
fewer characters.These names should not be preceded with an ampersand unless
substitution is desired. For example:
ISPEXEC VGET XYZ
ISPEXEC VGET &VNAME;

In the first example, XYZ is the name of the dialog variable to be passed. In the
second example, variable VNAME contains the name of the dialog variable to be
passed.

Some services accept a list of variable names passed as a single parameter. For
example, the syntax for the VGET service is:
ISPEXEC VGET name-list [ASIS|SHARED|PROFILE]

In this case, “name-list” is a positional parameter. It can consist of a list of up to
254 dialog variable names, each name separated by commas or blanks. If the
name-list consists of more than one name, it must be enclosed in parentheses.
Parentheses can be omitted if a single name constitutes the list. For example:
ISPEXEC VGET (AAA,BBB,CCC)
ISPEXEC VGET (LNAME FNAME I)
ISPEXEC VGET (XYZ)
ISPEXEC VGET XYZ

ISPF Services

4 z/OS V1R2.0 ISPF Services Guide



The last two lines of the example, with and without the parentheses, are
equivalent.

In other cases, a list of variable names can be passed as a keyword parameter. For
example, the syntax for the TBPUT service is:
ISPEXEC TBPUT table-name [SAVE(name-list)] [ORDER]

where the parentheses are required by the “keyword(value)” syntax. Again, the
names can be separated by commas or blanks. Examples:
ISPEXEC TBPUT TBLA SAVE(LNAME FNAME,I)
ISPEXEC TBPUT XTABLE SAVE(XYZ)

Invoking ISPF Services with Program Functions
Programs call ISPF services by invoking an ISPF subroutine interface. The two
basic call interfaces are ISPEXEC and ISPLINK.However, FORTRAN and Pascal use
the alternate name forms ISPEX and ISPLNK, because these languages limit a
module name to 6 characters.A program cannot use an ISPLINK call to invoke
APL2.

Call statements in this book are shown in PL/I syntax. Service names and keyword
values are shown as literals, enclosed in single quotes (’); for example:
CALL ISPLINK ('TBOPEN ', 'XTABLE ', 'NOWRITE ');

or, alternatively:
...set BUFLEN equal to 21...
CALL ISPEXEC (BUFLEN, 'TBOPEN XTABLE NOWRITE');

Some languages, such as COBOL, do not allow literals within a call statement. Use
of literals is never required for any language. All parameters can be specified as
variables.

The ISPLINK Interface
For calls in PL/I, the general call format for invoking ISPF services from functions
by using ISPLINK is:
CALL ISPLINK (service-name, parameter1, parameter2, ...);

CALL ISPLINK Parameters
These parameters are positional. They must appear in the order described for each
service.

Parameters shown inside brackets ([ ]) are optional, but ISPF assumes default
values for those parameters you do not choose.

If you want to omit a parameter and use its default value,you must account for it
by inserting a blank enclosed in single quotes (' ') in its place. This is how you
would omit parm2 from this example call:
CALL ISPLINK (service-name, parm1, ' ', parm3);

If you need only the first few of a list of parameters, you can omit all other
parameters to the right of the last parameter you need, provided that you are
certain that none of the remaining parameters are necessary for your invocation.
For example, if you are using a service that has five parameters, but you need to
use only the first three, code it like this:
CALL ISPLINK (service-name, parm1, parm2, parm3);

ISPF Services

Chapter 1. Introduction to ISPF Services 5



You must show the last parameter in the calling sequence with a ‘1’ as the high
order bit in the last entry of the address list. PL/I, COBOL, Pascal, and FORTRAN
call statements automatically generate this high-order bit. Standard register
conventions are used. Registers 2 to 14 are preserved across the call.However, you
must use the VL keyword in Assembler callstatements.

The following types of parameters can appear in a callingsequence to ISPLINK or
ISPLNK:

service-name or keyword
A left-justified character string that you code exactly as shown in the
service-name description. The description of the particular service shows the
service-name or keyword character string, each of which can be up to 8
characters long. All service names and keywords must be padded with blanks
to their maximum length of 8 characters.

single name
A left-justified character string. If the string is less than the maximum length
for the particular parameter, it must have a trailing blank to delimit the end of
the string. The minimum length for a single name is 1 character. The maximum
length for most names is 8 characters; exceptions include the data set name
and volume serial.

numeric value
A fullword fixed binary number.

numeric name
A dialog variable in which a number is stored. If these variables are defined in
a program module, they can be either fullword fixed binary variables or
character string variables. If the values are returned as characters, they are
right-justified with leading zeros.

name-list (string format)
A list of dialog variable names coded as a character string. Each name is from
1 to 8 characters in length. The string must be enclosed in parentheses. Within
the parentheses, you can separate the names with either commas or blanks. For
example:
'(AAA BBB CCC)'
'(AAA,BBB,CCC)'

When the list consists of a single name, you do not need parentheses. You must
include a trailing blank if parentheses are not used and if the name is fewer
than 8 characters long. A maximum of 254 names can be listed in the string
format.

name-list (structure format)
A list of dialog variable names passed in a structure. Each name is from 1 to 8
characters long. The structure must contain the following information in the
given order:

1. Count
A fullword fixed binary integer containing the number of names in the
list.

2. Reserved
A fullword fixed binary integer that must contain a value of either 0 or
8.

3. List of names
Each part of the list must be an 8-byte character string. Within each

ISPF Services

6 z/OS V1R2.0 ISPF Services Guide



part, the name of the variable must be left-justified and must have
trailing blanks. The maximum number of names in the list is 254.

Note: In general, either form of the name-list (the string format or the structure
format) is acceptable where a name-list is referred to in the syntax.
However, the ISPEXEC command syntax requires the string format for
name-list.

subfield with keyword
A left-justified character string that you must code exactly as shown. If the
subfield does not contain the maximum number of characters, you must
specify trailing blanks to fill out the field. For example, if you choose the NO
option from STATS(YES│NO ), then ‘NO ’ is passed as a parameter.

data set-list
A list of data set names or a ddname coded as a character string. The string
must be enclosed with parentheses. If a ddname is used, only one must be
specified; for example:
'(MYDD1)'

If a list of data set names is used, a maximum of 15 data set names can be
specified. Data set names must conform to TSO data set naming conventions.
When several data set names are included in the list, they must be separated
by commas or blanks. For example:
'('USERID1.PANELS1',PANELS2,PANELS3,'PROJECT1.PANELS')'

The ISPEXEC Interface
You can use the command function form for service requests in a program function
by using the call format of ISPEXEC. Excluding calls in FORTRAN, Pascal, and
APL2, the general call format for invoking ISPF services from program functions
by using ISPEXEC is:
CALL ISPEXEC (buf-len, buffer);

The following services are not available when you use CALL ISPEXEC but are
available when you use ISPLINK:
GRERROR VCOPY VMASK
GRINIT VDEFINE VREPLACE
GRTERM VDELETE VRESET

CALL ISPEXEC Parameters
buf-len

Specifies a fullword fixed binary integer containing the length of the buffer.

buffer
Specifies a buffer containing the name of the service and its parameters just as
they would appear in an ISPEXEC invocation for a command invocation
written in CLIST.

The maximum buffer size is 32767 bytes.

All services that are valid through ISPEXEC command invocation statements are
valid through the CALL ISPEXEC interface.

Using Parameters as Symbolic Variables
The ISPEXEC call interface allows you to specify parameters as symbolic variables.
A symbolic variable is one that is preceded with an ampersand (&).Before a scan

ISPF Services

Chapter 1. Introduction to ISPF Services 7



syntax check of a statement, variable names and the ampersands that precede them
are replaced with the values of the corresponding variables. A single scan takes
place.

Standard register conventions are used. Registers 2 to 14 are preserved across the
call.However, you must use the VL keyword in Assembler call statements.

FORTRAN and Pascal
The general call format for invoking ISPF services from FORTRANor Pascal
functions is either of the following:
lastrc = ISPLNK (service-name, parameter1, parameter2, ...)
lastrc = ISPEX (buf-len, buffer)

The parameters for ISPLNK and ISPEX are the same as those forISPLINK, as
described in “CALL ISPLINK Parameters” on page 5, and for ISPEXEC, as
described in “CALL ISPEXEC Parameters” on page 7.

The lastrc variable is both a FORTRAN and a Pascal integer variablethat contains
the return code from the specified ISPF service.The lastrc variable is any valid
FORTRAN or Pascal name.

For functions written in FORTRAN, arguments can be passed as either variables or
literals.

ISPF services can be issued from dialog function modules that reside either below
or above the 16-megabyte line. The dialog interface module ISPLINK (and alias
entry points ISPLNK, ISPEXEC, ISPEX, and ISPQRY) has the attributes
RMODE(ANY) and AMODE(ANY). This allows a 31-bit addressing mode caller.
Data areas below the 16-megabyte line are also supported.

Note: The ISPLINK module is shipped with the RMODE(ANY). The load module
is link-edited RMODE(24) and AMODE(ANY) to maintain compatibility
with ISPF dialogs that have the AMODE(24) attribute and that use a LOAD
and CALL interface to ISPLINK. ISPLINK can reside above the 16-megabyte
line.

FORTRAN Examples:
INTEGER LASTRC*4
CHARACTER SERVIS*8,TABLE*8,OPTION*8
DATA SERVIS/'TBOPEN '/
DATA TABLE/'XTABLE '/
DATA OPTION/'NOWRITE '/

.

.
LASTRC=ISPLNK(SERVIS,TABLE,OPTION)

INTEGER LASTRC *4
CHARACTER SERVIS *8 ,DATAID *8 ,OPTION *8
DATA SERVIS/'LMOPEN '/
DATA OPTION/'INPUT '/...

LASTRC = ISPLNK(SERVIS, DATAID, OPTION)

For FORTRAN service requests, you can use literals in assignment statements to
initialize parameter variables. You must use previously defined constants in
assignment statements. For example:

ISPF Services

8 z/OS V1R2.0 ISPF Services Guide



CHARACTER LMOPEN *8 ,SERVIS *8
DATA LMOPEN/'LMOPEN '/...

SERVIS = LMOPEN

Pascal Example:
FUNCTION ISPLNK:INTEGER; EXTERNAL;
CONSTANT SERVIS='LMOPEN ';

OPTION='INPUT ';

VAR LASTRC:INTEGER;
DATAID:STRING(8);

BEGIN...

LASTRC:=ISPLNK(SERVIS,DATAID,OPTION);

For functions written in Pascal, arguments can also be passed as variables or as
literals.

APL2
A dialog service can be invoked by using the function form of ISPEXEC:
[n] lastrc←ISPEXEC character-vector

lastrc
Specifies the name of an APL2 variable in which the return code from
theservice is to be stored.

character-vector
The character-vector is a single-character vector thatcontains all parameters to
be passed to the dialog service. The format is the same as dialog service
statements for command languages. The first parameter in the vector must be
the name of the service to be invoked.

Standard register conventions are used. Registers 2 to 14 are preserved across the
call.

A workspace containing the ISPEXEC function is provided with ISPF. All dialog
writers must use this ISPEXEC function, as it contains the interface to ISPF and
handles the implementation of commands (through the APL2 EXECUTE function);
otherwise, results are unpredictable. For example:

For information about using APL2 with ISPF, refer to the ISPF Dialog Developer’s
Guide and Reference

ISPF Services

Chapter 1. Introduction to ISPF Services 9



APL2 Examples:

The following example uses the LMOPEN service and checks the return code that
is placed in variable LASTCC.
LASTCC <- ISPEXEC 'LMOPEN DATAID INPUT'
-> (LASTCC = 0) / NORMALCONT...

PL/I
In PL/I programs, you should include the following declare statements:
DECLARE ISPLINK /* NAME OF ENTRY POINT */

ENTRY
EXTERNAL /* EXTERNAL ROUTINE */
OPTIONS( /* NEEDED OPTIONS */
ASM, /* DO NOT USE PL/I DOPE VECTORS */
INTER, /* INTERRUPTS */
RETCODE); /* EXPECT A RETURN CODE */

PL/I Examples:
DECLARE SERVICE CHAR(8) INIT('TBOPEN '),

TABLE CHAR(8) INIT('XTABLE '),
OPTION CHAR(8) INIT('NOWRITE ');

.

.
CALL ISPLINK (SERVICE, TABLE, OPTION);

DECLARE SERVICE CHAR(8) INIT('LMOPEN '),
DATAID CHAR(8),
OPTION CHAR(8) INIT('INPUT ');
.
.
.

CALL ISPLINK (SERVICE, DATAID, OPTION);

For service calls in PL/I, you can use literals in assignment statements to initialize
parameter values, as in:
SERVICE='LMOPEN ';

COBOL
COBOL does not allow literals within a call statement. Therefore, ISPF does not
require the use of literals. You can specify all parameters as variables, as in the
following examples:

COBOL Examples:
WORKING-STORAGE SECTION.

77 SERVIS PICTURE A(8) VALUE 'TBOPEN '.
77 TABL PICTURE A(8) VALUE 'XTABLE '.
77 OPTSHUN PICTURE A(8) VALUE 'NOWRITE '.

ISPF Services

10 z/OS V1R2.0 ISPF Services Guide



.

.
PROCEDURE DIVISION.

CALL 'ISPLINK' USING SERVIS TABL OPTSHUN.

WORKING-STORAGE SECTION.
77 SERVIS PICTURE A(8) VALUE 'LMOPEN '.
77 DATAID PICTURE A(8).
77 OPTSHUN PICTURE A(8) VALUE 'INPUT '.
.
.
.

PROCEDURE DIVISION.
CALL 'ISPLINK' USING SERVIS DATAID OPTSHUN.

For service calls in COBOL, you can use literals in assignmentstatements to
initialize parameter variables, as in:
MOVE 'LMOPEN ' TO SERVIS.

C
The general call format for invoking ISPF services from C functions is either of the
following:

retcode = isplink (service-name, parameter1, parameter2...);

retcode = ISPEXEC (buflen, buffer)

The retcode variable is a C integer variable used to store the return code on the
service you are using. For more information about using C with ISPF, refer to the
ISPF Dialog Developer’s Guide and Reference

C Examples:
#include <stdio.h>
#include <string.h>
#pragma linkage (isplink, OS)
#define SERVICE "'LMOPEN '"
#define OPTION "'INPUT '"
main ()
{
extern int isplink();

int retcode;

char8 DATAID;
.
.
.
strcpy (DATAID, "DATA ");
retcode = isplink (SERVICE, DATAID, OPTION);
}

Assembler
You can use the CALL Assembler macro to invoke ISPF services from Assembler
routines as follows:

CALL ISPLINK,(SERVICE, parameter-1,parameter-2,...),VL

CALL ISPEXEC,(BUFLEN,BUFFER),VL

When using the CALL macro, you must use the VL keyword.

ISPF Services

Chapter 1. Introduction to ISPF Services 11



The return code from a call to ISPLINK or ISPEXEC is returned to the Assembler
routine in register 15.

The following example shows an Assembler routine that invokes the LMINIT and
LMFREE services.

Assembler Example:

SAMPLE TITLE 'DO AN LMINIT AND THEN LMFREE'
SAMPLE CSECT

USING SAMPLE,15
B PASTID BRANCH AROUND I.D.
DC C'LMINIT &SYSDATE'

PASTID EQU *
STM 14,12,12(13) SAVE CALLER'S REGS
LR 12,15 ESTABLISH A BASE
DROP 15 GIVE UP REG 15
USING SAMPLE,12 USE REG 12 AS BASE
LA 11,SAVEOS POINT TO 'MY' SAVE AREA
ST 13,4(0,11) STORE FORWARD POINTER
ST 11,8(0,13) STORE BACKWARD POINTER
LR 13,11 LOCAL SAVE AREA POINTER
SPACE

*********************************************************************
* DEFINE VARIABLES TO ISPF *
*********************************************************************

CALL ISPLINK,(VDEFINE,DATAID,DATA,CHAR,LNDATA),VL
SPACE

*********************************************************************
* INVOKE THE LMINIT SERVICE *
*********************************************************************

CALL ISPLINK,(LMINIT,DATAID,B,B,B,B,B,B,DSN),VL
SPACE
LR 4,15 PUT RETCODE IN REG 4
SPACE

*********************************************************************
* INVOKE THE LMFREE SERVICE *
*********************************************************************

CALL ISPLINK,(LMFREE,DATA),VL
SPACE
LR 4,15 PUT RETCODE IN REG 4
SPACE

*********************************************************************
* CLEAN UP VDEFINES *
*********************************************************************

CALL ISPLINK,(VDELETE,DATAID),VL
L 13,SAVEOS+4 GET CALLER'S SAVE AREA
LM 14,12,12(13) RESTORE CALLERS REGS
SR 15,15 GO BACK WITH RETURN CODE 0
BR 14 LEAVE THIS MODULE
CNOP 0,8
LTORG

LNDATA DC F'8' LENGTH OF DATA
VDEFINE DC CL8'VDEFINE ' VDEFINE SERVICE
VDELETE DC CL8'VDELETE ' VDELETE SERVICE
LMINIT DC CL8'LMINIT ' LMINIT SERVICE
LMFREE DC CL8'LMFREE ' LMFREE SERVICE
DATAID DC CL8'DATA ' VARIABLE
CHAR DC CL4'CHAR' VARIABLE
DSN DC C'PDFUSER.SAMPLE.PDS'' ' DATA SET NAME
DATA DC CL8' ' DATAID SAVE AREA
SAVEOS DS 18F STANDARD SAVE AREA
B DC CL1' ' SINGLE BLANK

LTORG
END SAMPLE

ISPF Services

12 z/OS V1R2.0 ISPF Services Guide



Return Codes from Services
Each service returns a numeric code, called a return code, indicating the results of
the operation. These return codes are summarized in Table 1.

Table 1. Service Return Codes

Operation Results Return Code Reason

Normal completion 0
Indicates that the service completed operation
without errors.

Exception condition 4, 8

Indicates a condition that is not necessarily an error,
but that the dialog should be aware of. A return code
of 4 is informational, while an 8 generally indicates a
non-terminating error condition, such as the end of a
data set or member list.

Error condition
10, 12, 14, 16,
20

Indicates that the service did not complete operation
because of errors. Use the CONTROL service to
control errors with a return code of 12 or greater.
Return codes of 10 and 14 are particular to PDF
component services.

Return codes and their meanings vary for each service and are listed with each
service description in this chapter.

Command Invocation Return Code Variable
For a command invocation, the return code is returned in the CLIST variable
LASTCC.

Call Invocation Return Code Variables
For call invocation, the return code is returned in register 15 or, in FORTRAN and
Pascal programs, in registers 15 and 0.In APL2, the return code is placed on the
execution stack by the ISPEXEC function.

FORTRAN and Pascal

FORTRAN and Pascal programs can examine the return code by using an integer
variable, such as lastrc in the following example:
lastrc = ISPLNK (service name, parameter1, parameter2, ...)

PL/I

PL/I programs can examine the return code by using the PLIRETV built-in
function. The following declaration statements are required:
DECLARE ISPLINK EXTERNAL ENTRY OPTIONS(ASM INTER RETCODE);
DECLARE PLIRETV BUILTIN;

or alternatively:
DECLARE ISPEXEC EXTERNAL ENTRY OPTIONS(ASM INTER RETCODE);
DECLARE PLIRETV BUILTIN;

COBOL

COBOL programs can examine the return code by using the built-in
RETURN-CODE variable.

ISPF Services

Chapter 1. Introduction to ISPF Services 13



Return Code of 12 or Higher
The dialog can use the ISPF dialog management CONTROL service to set the error
mode to RETURN, or CANCEL, which is the default. See the CONTROL service in
“Chapter 2. Description of the ISPF Services” on page 21 for detailed information.

The error mode setting determines what happens when a return code is 12 or
higher. There are two error modes:

CANCEL Displays and logs a message, then stops the dialog and displays
the previous Primary Option Menu.

RETURN Formats an error message, but does not display or log it. Returns
to the function that invoked the service, passing back the
designated return code.

In CANCEL mode, control is not usually returned to the function that invoked the
service. Consequently, the function does not see a return code of 12 or higher, so
you do not have to include logic to process errors of this severity.

However, ISPLINK returns a code of 20 to the dialog when an invalid ISPF
environment causes the error.In this situation, ISPF cannot display a panel to show
the error. Control is returned to the dialog, even though the return code is 12 or
higher.

In RETURN mode, control returns to the function that invoked the service. That
function must have logic to handle return codes of 12 or higher.

The RETURN mode applies only to the function that invoked the CONTROL
service. If a lower-level function is invoked, it starts out in CANCEL mode. When
a function returns to the higher-level function that invoked it, the mode that the
higher-level function was operating in resumes.

System Variables Used to Format Error Messages
If an error occurs, an error message is formatted before control returnsto the
function. The following list defines the contents of the system variables that are
used to format error messages:

Variables Contents

ZERRMSG Message ID.

ZERRSM Short-message text in which variables have been resolved.

ZERRLM Long-message text in which variables have been resolved.

ZERRHM The name of a Help panel, if one was specified in the message
definition.

ZERRALRM The value YES if an alarm was specified in the message definition
(.ALARM=YES); otherwise, the value NO.

ZERRMSG, ZERRSM, and ZERRLM are changed only when the return code from a
DM component service is greater than 8.

These system variables are in the function pool, if it exists. Otherwise, they are in
the shared variable pool.

The function can display the message, log the message, or both, simply by
invoking the appropriate service with the message ID ISRZ002. For example:

ISPF Services

14 z/OS V1R2.0 ISPF Services Guide



ISPEXEC SETMSG MSG( ISRZ002 )
ISPEXEC LOG MSG( ISRZ002 )

The service provides the short- and long-message text, the name of the
corresponding help panel, and the alarm setting for your use.

Return Codes from I/O and Command Routines
EDIF and BRIF invoke routines supplied on the service invocation to perform I/O
and primary command processing. Specific return codes are expected of these
routines and are grouped into four categories:

0 Normal completion.

4 ISPF should process the request.

8 End of file.

12, 16, and 20
Error conditions; the specified functions did not complete because of
errors.

Return codes for these functions are described in greater detail in the EDIF and
BRIF sections in Chapter 2. Description of the ISPF Services.

A Summary of the ISPF Services

Display Services
ADDPOP Specifies that the following panel displays are to be in a pop-up

window. It also identifies the location of the pop-up window on
the screen in relation to the underlying panel or window.

DISPLAY Reads a panel definition from the panel files, initializes variable
information in the panel from the corresponding dialog variables
in the function, shared, or profile variable pools, and displays the
panel on the screen. Optionally, the DISPLAY service might
superimpose a message on the display.

REMPOP Removes a pop-up window from the screen.

SELECT Used to display a hierarchy of selection panels or invoke a
function.

SETMSG Constructs a specified message from the message file in an ISPF
system savearea. The message will be superimposed on the next
panel displayed by any DM component service.

TBDISPL Combines information from panel definitions withinformation
stored in ISPF tables. It displays selected rows from a table, and
allows the user to identify rows for processing.

File Tailoring Services
The file tailoring services, listed in the order they are normally invoked, are:

FTOPEN Prepares the file tailoring process and specifies whether the
temporary file is to be used for output.

FTINCL Specifies the skeleton to be used and starts the tailoring process.

FTCLOSE Ends the file tailoring process.

FTERASE Erases an output file created by file tailoring.

ISPF Services

Chapter 1. Introduction to ISPF Services 15



Library Access Services
DSINFO Returns information about a particular data set in dialog variables

in the function pool.

LMCLOSE Closes a data set.

LMCOMP Compresses a partitioned data using either the new compress
request exit or IEBCOPY if the exit is not installed.

LMCOPY Copies partitioned data set members or sequential data sets,
allowing pack, lock, and automatic truncation options.

LMDDISP Displays the data set list for a specified dslist ID.

LMDENQ Returns a table of ENQs.

LMDFREE Removes the link between a dslist ID and a DSNAME LEVEL and
VOLUME combination.

LMDINIT Associates a DSNAME LEVEL and VOLUME combination with a
dslist ID. Thereafter, this dslist ID is used to identify the DSNAME
LEVEL and VOLUME combination for processing by other library
access services.

LMDLIST Creates a data set list for a specified dslist ID.

LMERASE Deletes an ISPF library or MVS data set.

LMFREE Releases the data set associated with a given data-id.

LMGET Reads one record of a data set.

LMINIT Associates one or more ISPF libraries or an existing data set with a
data-id. Thereafter, this data-id is used to identify the data set for
processing by other library access services.

LMMADD Adds a member to an ISPF library or a partitioned data set.

LMMDEL Deletes a member of an ISPF library or a partitioned data set.

LMMDISP Provides member selection lists for:
v Single partitioned data sets
v Concatenations of up to four partitioned data sets.

LMMFIND Finds a member of an ISPF library or a partitioned data set.

LMMLIST Creates a member list of an ISPF library or a partitioned data set.

LMMOVE Moves partitioned data set members or sequential data sets,
allowing pack and automatic truncation options.

LMMREN Renames a member of an ISPF library or a partitioned data set.

LMMREP Replaces a member of an ISPF library or a partitioned data set.

LMMSTATS Sets and stores, or deletes ISPF statistics for partitioned data set
members that have fixed-length or variable-length records.

LMOPEN Opens a data set.

LMPRINT Prints to the list data set, with formatting optional.

LMPUT Writes one record of a data set.

LMQUERY Provides requested information regarding the data set associated
with a given data-id.

LMRENAME Renames an ISPF library.

ISPF Services

16 z/OS V1R2.0 ISPF Services Guide

||



MEMLIST Enables access to the Library Utility member list from within a
dialog.

PDF Component Services
PDF component services consist of BRIF (Browse Interface), BROWSE, EDIF (Edit
Interface), EDIREC (edit recovery for EDIF), EDIT, VIEW, VIIF, and EDREC (edit
recovery for EDIT and VIEW),along with the library access services mentioned
earlier.

BRIF Provides browse functions for data accessed through
dialog-supplied I/O routines. It allows you to browse data other
than partitioned data sets or sequential files, such as subsystem
data and in-storage data, and to preprocess the data being
browsed.

BROWSE Can be used to look at any ISPF library, concatenation of ISPF
libraries, or data set that can be allocated by using the LMINIT
service, and certain other data types not supported by ISPF. You
can browse host data sets on the workstation or workstation files
on the host.

EDIF Provides edit functions for data accessed through dialog-supplied
I/O routines. It allows you to edit data other than partitioned data
sets or sequential files, such as subsystem data and in-storage data,
and to preprocess the data being browsed.

EDIREC Initializes an edit recovery table (ISREIRT) for use by the EDIF
service and determines whether recovery from the EDIF service is
pending.

EDIT Can be used to look at any ISPF library, concatenation of ISPF
libraries, or data set that can be allocated by using the LMINIT
service. The EDIT service provides an interface to the PDF editor
and bypasses the display of the Edit Entry Panel on the host. You
can also edit host files on the workstation or workstation files on
the host.

EDREC Initializes an edit or view recovery table, determines whether
recovery is pending, and takes the action specified by the first
argument.

VIEW Functions exactly like the EDIT service, with the following
exceptions:
1. You must use the REPLACE or CREATE primary command to

save data.
2. When you enter the END primary command after altering a file

in VIEW mode, you will be prompted to either save the
changes or exit without saving them.

VIIF Provides edit functions for data accessed through dialog-supplied
I/O routines. It enables you to view data other than partitioned
data sets or sequential files, such as subsystem data and in-storage
data, and to pre-process the data being viewed.

Table Services
Services that Affect an Entire Table

TBCLOSE Closes a table and saves a permanent copy if the table was opened.

TBCREATE Creates a new table and opens it for processing.

TBEND Closes a table without saving it.

ISPF Services

Chapter 1. Introduction to ISPF Services 17



TBERASE Deletes a permanent table from the table output file.

TBOPEN Opens an existing permanent table for processing.

TBQUERY Obtains information about a table.

TBSAVE Saves a permanent copy of a table without closing it.

TBSORT Sorts a table.

TBSTATS Provides access to statistics for a table.

Services that Affect Table Rows

TBADD Adds a new row to the table.

TBBOTTOM Sets CRP to the last row and retrieves the row.

TBDELETE Deletes a row from the table.

TBEXIST Tests for the existence of a row (by key).

TBGET Retrieves a row from the table.

TBMOD Updates an existing row in the table. Otherwise, adds a new row
to the table.

TBPUT Updates a row in the table if it exists and if the keys match.

TBSARG Establishes a search argument for use with TBSCAN. Can also be
used in conjunction with TBDISPL.

TBSCAN Searches a table for a row that matches a list of argument
variables, and retrieves the row.

TBSKIP Moves the CRP forward or backward by a specified number of
rows, and then retrieves the row at which the CRP is positioned.

TBTOP Sets CRP to TOP, ahead of the first row.

TBVCLEAR Sets to null dialog variables that correspond to variables in the
table.

Variable Services
All Functions

VERASE Removes variables from the shared pool and/or profile pool.

VGET Retrieves variables from the shared pool or profile pool.

VPUT Updates variables in the shared pool or profile pool.

Program Functions Only

VCOPY Copies data from a dialog variable to the program.

VDEFINE Defines function program variables to ISPF.

VDELETE Removes the definition of function variables.

VMASK Associates a mask with a dialog variable.

VREPLACE Updates dialog variables with program data specified in the
service request.

VRESET Resets function variables.

ISPF Services

18 z/OS V1R2.0 ISPF Services Guide



Miscellaneous Services
CONTROL Allows a function to condition ISPF to expect certain kinds of

display output, or to control the disposition of errors encountered
by dialog management services.

GETMSG Obtains a message and related information and stores them in
variables specified in the service request. .bookmark

GRINIT Initializes the ISPF/GDDM* interface and optionally requests that
ISPF define a panel’s graphic area as a GDDM graphics field.

GRTERM Terminates a previously established GDDM interface.

GRERROR Provides access to the address of the GDDM error record and the
address of the GDDM call format descriptor module.

LIBDEF Provides applications with a method of dynamically defining
application data element files while in an active ISPF session.

QLIBDEF Allows an ISPF dialog to obtain the current LIBDEF definition
information, which can be saved by the dialog and used later to
restore any LIBDEF definitions that may have been overlaid.

LIST Allows a dialog to write data lines directly (without using print
commands or utilities) to the ISPF list data set.

LOG Allows a function to write a message to the ISPF log file. The user
can specify whether the log is to be printed, kept, or deleted when
ISPF is terminated.

PQUERY Returns information for a specific area on a specific panel. The
type, size, and position characteristics associated with the area are
returned in variables.

FILESTAT Provides statistics about a site on the connected workstation.

FILEXFER Uploads files from the workstation or downloads files to the
workstation.

QBASELIB Enables an ISPF dialog to obtain the current library information for
a specified DDNAME.

TRANS Translates data from one Coded Character Set Identifier (CCSID) to
another.

WSCON Enables the user to connect to the workstation without using the
GUI parameter on the ISPSTART command and the Initiate
Workstation Connection panel from the ISPF settings.

FILEXFER Enables the user to disconnect from the workstation without
having to terminate the ISPF session.

ISPF Services

Chapter 1. Introduction to ISPF Services 19



ISPF Services

20 z/OS V1R2.0 ISPF Services Guide



Chapter 2. Description of the ISPF Services

The services are listed in alphabetical order.

Each service description consists of the following information:

Description A description of the function and operation of the
service. This description also refers to other
services that can be used with this service.

Format The syntax used to code the service, showing both
command invocation and call invocation.

Parameters A description of any required or optional keywords
or parameters.

Return Codes A description of the codes returned by the service.
For all services, a return code of 12 or higher
implies a severe error. This error is usually a
syntax error, but can be any severe error detected
when using the services.

Examples Sample usage of the services.

ADDPOP – Start Pop-Up Window Mode
The ADDPOP service notifies the dialog manager that all subsequent panel
displays are to appear in a pop-up window. No visible results appear on the screen
until you issue a DISPLAY, TBDISPL, or SELECT PANEL call.

All subsequent panel displays will be in the pop-up window created with the
ADDPOP call, until a REMPOP or another ADDPOP is called. Another ADDPOP
call creates a separate pop-up window.

Each pop-up window created as a result of a successful ADDPOP service call can
also have a window title. The title is embedded in the top of the window frame
border and can be only one line length. If the title is longer than the window
frame, the dialog manager truncates it. To define the window title, set system
variable ZWINTTL to the desired window title text.

Command Procedure Format
ISPEXEC ADDPOP [POPLOC(field-name)]

[ROW(row)]
[COLUMN(column)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);
CALL ISPLINK ('ADDPOP ' [,field-name]

[,row] [,column ]);

Parameters
The field-name, row, and column parameters are optional.

© Copyright IBM Corp. 1980, 2001 21



Note: When running in GUI mode, the field-name, row, and column parameters
are ignored.

If you omit the field-name parameter when using the ADDPOP service, the Dialog
Manageroffset positions the pop-up window so that the title of the underlying
panel is visible, and horizontally four character spaces to the right of the
underlying panel.

If the pop-up window will not fit relative to the ADDPOP positioning parameters,
the Dialog Manager overrides these parameters and adjusts the window so that it
fits on the screen.

field-name
Specifies that the dialog manager is to position the pop-up window relative to
the specified field in the currently displayed panel. If omitted, the pop-up
window is offset positioned relative to the active window.

row
Specifies that the dialog manager is to adjust the field specific location row or
offset location row by the specified amount. This amount can be either positive
or negative. The default value is 0.

column
Specifies that the dialog manager is to adjust the field specific location column
or offset location column by the specified amount. This amount can be positive
or negative. The default value is 0.

buf-len
Specifies a fullword fixed binary integer containing the length of buffer.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

12 An ADDPOP service call was issued before a panel was displayed or
another ADDPOP service call was issued before a panel was displayed for
the previous ADDPOP call.

20 Severe error.

Example
The following EXEC called from the ISPF Primary Option panel:
/* REXX */
ADDRESS ISPEXEC
"ADDPOP"
"DISPLAY PANEL(PANELA)"
"ADDPOP POPLOC(FIELD2)"
ZWINTTL = "POPUP WINDOW TITLE"
"DISPLAY PANEL(PANELB)"
"ADDPOP COLUMN(5) ROW(3)"
ZWINTTL = ""
"DISPLAY PANEL(PANELC)"
EXIT

ADDPOP

22 z/OS V1R2.0 ISPF Services Guide



results in the panel displayed in Figure 5.

BRIF – Browse Interface
The Browse Interface (BRIF) service provides browse functions for data accessed
through dialog-supplied I/O routines. The invoking dialog must perform all
environment-dependent functions such as file allocation, opening, reading, closing,
and freeing. The dialog is also responsible for any Enqueue/Dequeue serialization
that is required. With the dialog providing the I/O routines, BRIF allows you to:
v Browse data other than partitioned data sets or sequential files, such as

subsystem data and in-storage data.
v Do preprocessing of the data being browsed.

The invoking dialog provides addresses of routines that will:
v Respond to a read request for a specific record by its relative position in the

data.
v Perform processing for the BROWSE primary command. If this routine is not

provided, ISPF will process any request for the BROWSE primary command.

All addresses must be 31-bit addresses, and the routines must have an addressing
mode (AMODE) of 31.

The dialog-supplied read, write, and command processing routines are called
directly by ISPF at the same task level (TCB) that displays the ISPF screens. If you
need to ensure that your program runs at the same task level as the routines, you
should use the SELECT PGM( ) service to start your program. This may be a factor
if your program expects to create or share data spaces or other task-specific
resources between the main program and the read, write, or command routines.

Command Invocation Format
Command procedures cannot be used to invoke this service.

Menu  Utilities  Compilers  Options  Status  Help
-                                        -------------------------------------

--------- Panel A ------------       ption Menu

0     Field 1  . . . . ___________       ters            User ID . : USERID
1     Field 2  . . . . ___________       istings         Time. . . : 14:27
2     Field 3  . . .             POPUP WINDOW TITLE              . : 3278
3     Field 4  . . .   --------- Panel B ------------            . : 1
4                                                                . : ENGLISH
5                         This is Panel B                        . : ISR
6                                                                         OC
7   COMMAND ===> ___     Fiel   --------- Panel C ------------            D
8    F1=HELP    F2=S     Fiel
9    F4=RETURN  F5=R     Fiel      This is Panel C                        6,B
1                        Fiel                                             4.1

Field E  . . . . ___________
Enter X to Terminate   COMMAN     Field F  . . . . ___________

F1=HE     Field G  . . . . ___________
F4=RE     Field H  . . . . ___________

COMMAND ===> _________________
Option ===> TSO ADDP             F1=HELP      F2=SPLIT     F3=END
F1=Help      F2=Split     F3    F4=RETURN    F5=RFIND     F6=RCHANGE
F10=Actions  F12=Cancel

Figure 5. Multiple Pop-up Windows

ADDPOP

Chapter 2. Description of ISPF Services 23

|
|

|
|
|
|
|
|



Call Invocation Format
CALL ISPLINK ('BRIF ', [data-name] ,rec-format

,rec-len ,read-routine

,[cmd-routine] ,[dialog-data]

,[panel-name] ,[format-name]

,['YES '|'NO ']);

Parameters
data-name

This parameter allows you to specify a data name for the source data to be
browsed. This name will be displayed in the Title line of the default Browse
panel; if data-name is not specified, no name is displayed on the panel. This
parameter must not have any embedded blanks, and its maximum length is 54
characters. This name is stored in ZDSNT in the function pool.

rec-format
The record format of the data to be browsed:
v F - fixed
v FA - fixed (ASA printer control characters)
v FM - fixed (machine code printer control characters)
v V - variable
v VA - variable (ASA printer control characters)
v VM - variable (machine code printer control characters)
v U - undefined.

rec-len
The record length, in bytes, of the data to be browsed. For variable and
undefined record formats, this is the maximum record length. This parameter
must be a positive numeric value with a maximum value of 32,760 bytes.

The dialog can hide data during a Browse session by specifying the record
length to be less than the actual data being browsed. By doing this, BRIF
displays only the data up to the specified record length.

read-routine
A fullword address indicating the entry point of a dialog-supplied read
routine. See “Read Routine” on page 25 for more information on this
parameter.

If a read-routine displays its own panel, then a CONTROL DISPLAY SAVE should be
done at the beginning of the panel and a CONTROL DISPLAY RESTORE should be
done at the end.

cmd-routine
A fullword address indicating the entry point of a dialog-supplied routine that
processes the BROWSE primary command or any dialog-specific primary
commands. See “Command Routine” on page 26 for more information on this
parameter. If this parameter is not specified, ISPF initiates a recursive Browse
session to handle any request for the BROWSE primary command.

If a cmd-routine displays its own panel, than a CONTROL DISPLAY SAVE should be
done at the beginning of the panel and a CONTROL DISPLAY RESTORE should be
done at the end.

dialog-data
A fullword address indicating the beginning of a dialog data area. This address

BRIF

24 z/OS V1R2.0 ISPF Services Guide



is passed to the dialog-supplied routines. If no address is supplied, zeroes are
passed to the dialog routines. This data area provides a communication area
for the dialog.

panel-name
The name of the panel to use for displaying the data. The default is the
standard Browse data display panel. Refer to ISPF Planning and Customizing for
information about developing a customized panel.

format-name
The name of the format to be used to reformat the data. The default is no
format. This parameter is provided to support the IBM 5550 terminal using the
Double-Byte Character Set (DBCS).

YES|NO
Specifies whether the data is treated as mixed-mode DBCS data. If YES is
specified, the BRIF service treats the data as mixed-mode DBCS data. If NO
(the default value) is specified, the data is treated as EBCDIC (single-byte)
data. This parameter is provided to support the IBM 5550 terminal using the
Double-Byte Character Set (DBCS).

Dialog-Supplied Routines
The dialog-supplied routines are invoked by using standard linkage. Addresses
must be 31-bit addresses, and the addressing mode (AMODE) of the routines must
be AMODE=31.

The dialog-supplied read, write, and command processing routines are called
directly by ISPF at the same task level (TCB) that displays the ISPF screens. If you
need to ensure that your program runs at the same task level as the routines, you
should use the SELECT PGM( ) service to start your program. This may be a factor
if your program expects to create or share data spaces or other task-specific
resources between the main program and the read, write, or command routines.

Note: The dialog-supplied routines and the read and command exits cannot be
written in languages that use the Language Environment (LE) run time
environment .Exits that require the existence of an LE environment are not
supported

Read Routine
The read routine is invoked with the following parameters:
v Fullword pointer to record data read (output from read routine)
v Fullword fixed binary data length of the record read if the rec-format parameter

is V, VA, VM, or U (output from read routine)
v Fullword relative record number:

– Record-requested input to read routine
– Record-provided output from read routine when return code is 4 or 8.

v Fullword dialog data area address.

BRIF calls the read routine as the data records are required to be displayed. Data
not being displayed is not retained.

After the first screen of data is displayed, the first SCROLL DOWN MAX
command results in a request to the dialog read routine for relative record number
99999999 (this is the maximum number of records allowed for browsing). The read
routine is responsible for determining the relative record number of the last record

BRIF

Chapter 2. Description of ISPF Services 25

|
|
|
|
|
|

|
|
|
|



in the data. It must return that last record number, and a pointer to the data with a
return code of 4; the end of file is temporary, or 8, if the end of file is permanent.
When BRIF receives this response, it uses the last record number to determine the
relative record number of the first data record that should appear on the display
(last record number minus the number of data lines on the display + 1). BRIF then
calls the read routine requesting this first data display record, and subsequently
requests all following records up to the last record in the data to fill the display.

The read routine should maintain the previous record number requested so that on
the next read request a determination can be made whether the requested record is
the next record in the data. This could save a considerable amount of processing
time in the read routine, since data records are frequently requested in sequential
order for partitions of data.

If an I/O error occurs while attempting to read to the end of data, the read routine
returns the relative record number of the record causing the I/O error with a
return code of 8. When BRIF requests this record number again to format the
screen, the read routine then issues a return code of 16, indicating a read error.

The BRIF service requests and displays all additional records beyond the
temporary end of data (return code 4) if you attempt to scroll down past the end
of data or cause any interrupt (such as Enter) when the end-of-data line is present
on the display.

If you decrease the number of records during the BRIF session, the read routine
can set a new last record number that is smaller than the current value with return
code 4.

When the BRIF service receives a return code 8, it sets the last record number as
the permanent end of file. The BRIF service does not request any additional
records beyond the permanent end of file.

Command Routine
The dialog-supplied command routine, when specified, is called to process the
BROWSE primary command or any dialog-specific primary commands. The
Command Routine is invoked with two parameters:
v A Fullword fixed binary function code indicating the type of command.

10 Recursive Browse

20 A command not recognized by browse. The command can be a
dialog-specific command or an invalid command. The command routine
is responsible for getting the command from the variable ZCMD and
any necessary parsing of the command. If the command routine was not
specified or if the command routine returns a return code of 4, BRIF
issues an INVALID COMMAND message.

v A Fullword dialog data area address.

Return Codes
When a dialog routine terminates with a return code (12 or higher or an
unexpected return code), the dialog can issue a SETMSG to generate a message on
the next panel display. If the dialog does not set a message, the BRIF service will
issue a default message.

BRIF

26 z/OS V1R2.0 ISPF Services Guide



Read Routine Return Codes
0 Normal completion.

4 Temporary end of file.

8 Record requested beyond end of data. The relative record number of the
last data record and a pointer to the last data record are returned.

16 Read error. Browse data obtained up to the read error is formatted and
displayed with an indication that a read error was encountered.

20 Severe error. (The BRIF service terminates immediately with a return code
of 20.)

Command Routine
0 Normal completion.

4 ISPF should process the requested function.

12 Command deferred; retain the command on the Command line. Browse
data is redisplayed.

20 Severe error. (The BRIF service terminates immediately with a return code
of 20.)

Errors that the BRIF service cannot handle must be handled by the dialog; for
example, environment-dependent errors would be processed by the dialog.

BRIF service
0 Normal completion.

12 No data to browse.

16 Unexpected return code received from a dialog-supplied routine; unable to
continue. When an unexpected return code is received, the BRIF service
terminates immediately with a return code of 16.

20 Severe error; unable to continue.

After the Browse session has been terminated, control is returned to the dialog
with a return code indicating the completion status of the service.

Example
This example invokes the BRIF service to browse data called ‘SPOOL.DATA’,
which has a variable record format with a maximum record length of 132
characters. The READRTN read routine reads the data records. The CMDRTN
command routine processes the BROWSE primary command and any
dialog-specific primary commands.

Call Invocation:
CALL ISPLINK('BRIF ','SPOOL.DATA ','V ',132,READRTN,CMDRTN,' ',

' ',' ','NO ');

For a more complete example of using BRIF, including dialog-supplied I/O
routines and source code, see the ISPF Dialog Developer’s Guide and Reference.

BRIF

Chapter 2. Description of ISPF Services 27



BROWSE – Browse a Data Set
The BROWSE service provides an interface to the Browse function and bypasses
the display of the View Entry Panel. See the ISPF User’s Guide for a complete
description of the Browse function.

The BROWSE service allows you to use a customized panel for displaying data.
Panel ISRBROB should be used as a model for your customized panel. You can
also use the BROWSE service recursively, either throughnested dialogs or by
entering a BROWSE command while browsing. BROWSE allows you to browse up
to a maximum of 99,999,999 records.

BROWSE can be used to look at any ISPF library, concatenation of ISPF libraries,
or data set that can be allocated by using the LMINIT service. However, it cannot
be used by a PL/I main program that also uses subtasking. The BRIF service
allows you to browse data types not supported by ISPF.

Command Invocation Format
ISPEXEC BROWSE DATASET(dsname) [VOLUME(serial)]

[PASSWORD(pswd-value)]

[PANEL(panel-name)]

[FORMAT(format-name)]

[MIXED(YES|NO)]

OR

ISPEXEC BROWSE DATAID(data-id) [MEMBER(member-name)]

[PANEL(panel-name)]

[FORMAT(format-name)]

[MIXED(YES|NO)]

Call Invocation Format
CALL ISPLINK ('BROWSE ', {dsname} ,[serial]

,[pswd-value]

,[panel-name]

,{data-id}

,[member-name]

,[format-name]

,['YES '|'NO '];

OR
CALL ISPEXEC (buf-len, buffer);

Parameters
dsname

The data set name, in TSO syntax, of the data set to be browsed. This is

BROWSE

28 z/OS V1R2.0 ISPF Services Guide



equivalent to the “other” data set name on the View Entry Panel. You can
specify a fully qualified data set name enclosed in apostrophes. If the
apostrophes are omitted, the TSO data set prefix from the user’s TSO profile is
automatically attached to the data set name. The maximum length of this
parameter is 56 characters.

For ISPF libraries and MVS partitioned data sets, you can specify a member
name or pattern enclosed in parentheses. If a member name is not included, or
a pattern is specified as part of the dsname specification when the DATASET
keyword is used, a member selection list for the ISPF library, concatenation of
libraries, or MVS partitioned data set is displayed. See the ISPF User’s Guide
for a complete description of patterns and pattern matching.

Note: You can also specify a VSAM data set name. If a VSAM data set is
specified, ISPF checks the ISPF configuration table to see if VSAM
support is enabled. If it is, the specified tool is invoked. If VSAM
support is not enabled, an error message is displayed.

serial
The serial number of the volume on which the data set resides. If you omit this
parameter or code it as blank, the system catalog is searched for the data set
name. The maximum length of this parameter is 6 characters.

pswd-value
The password if the data set has MVS password protection. Do not specify a
password for Resource Access Control Facility* (RACF*)-protected data sets or
Password Checking Facility (PCF)-protected data sets.

panel-name
The name of a customized browse panel that you create, to be used when
displaying the data. Refer to ISPF Planning and Customizing for information
about developing a customized panel.

format-name
The name of the format to be used to reformat the data. The format-name
parameter is provided to support the IBM 5550 terminal using the Double-Byte
Character Set (DBCS).

YES|NO
For the MIXED parameter, if YES is specified, the BROWSE service treats the
data as mixed-mode DBCS data. If NO (the default value) is specified, the data
is treated as EBCDIC (single-byte) data. This parameter is provided to support
the IBM 5550 terminal using the Double-Byte Character Set (DBCS).

data-id
The data ID that was returned from the LMINIT service. The maximum length
of this parameter is 8 characters.

You can use the LMINIT service in either of two ways before invoking the
BROWSE service:
v You can use LMINIT to allocate existing data sets by specifying a data set

name or ISPF library qualifiers. LMINIT returns a data ID as output. This
data ID, rather than a data set name, is then passed as input to the BROWSE
service.

v The dialog can allocate its own data set by using the TSO ALLOCATE
command or MVS dynamic allocation, and then pass the ddname to
LMINIT. Again, a data ID is returned as output from LMINIT and
subsequently passed to the BROWSE service. This procedure is called the

BROWSE

Chapter 2. Description of ISPF Services 29



ddname interface to BROWSE.It is particularly useful for browsing VIO data
sets, which cannot be accessed by data set name because they are not
cataloged.

Note: Using the data ID of a multivolume data set causes Browse to look at
all volumes of that data set. If you want to look at just one volume of
a multivolume data set, use the data set name and volume number.

member-name
A member of an ISPF library or MVS partitioned data set, or a pattern. If you
do not specify a member name when the MEMBER keyword or call invocation
is used, or if a pattern is specified, a member selection list for the ISPF library,
concatenation of libraries, or MVS partitioned data set is displayed.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal completion.

12 Zero-length data; empty sequential data set or zero-length member of a
partitioned data set.

14 Specified member not found.

16 One of the following:
v No members matched the specified pattern.
v No members in the partitioned data set.

18 A VSAM data set was specified but the ISPF Configuration Table does not
allow VSAM processing.

20 Severe error; unable to continue.

Example
This example invokes the BROWSE service to give you a member list of all
members beginning with ‘TEL’. A member name can be selected from this member
list.

Command Invocation
ISPEXEC BROWSE DATASET('ISPFPROJ.FTOUTPUT(TEL*)')
OR

ISPEXEC LMINIT DATAID(DDBROW) +
DATASET('ISPFPROJ.FTOUTPUT')

OR

ISPEXEC BROWSE DATAID(&DDBROW) MEMBER(TEL*)

Call Invocation
CALL ISPLINK ('BROWSE ','ISPFPROJ.FTOUTPUT(TEL*) ');

or

BROWSE

30 z/OS V1R2.0 ISPF Services Guide

||
|



Set the program variable BUFFER to contain:
BUFFER = 'BROWSE DATASET('ISPFPROJ.FTOUTPUT(TELOUT)')';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

CONTROL – Set Processing Modes
The CONTROL service defines certain processing options for the dialog
environment. It allows a function to condition ISPF to expect certain kinds of
display output, or to control the disposition of errors encountered by other DM
component services. The processing options control the display screen and error
processing.

Command Invocation Format
ISPEXEC CONTROL { DISPLAY { LOCK } }

{ { LINE [START(line-number)] } }
{ { SM [START(line-number)] } }
{ { REFRESH } }
{ { SAVE|RESTORE } }
{ { ALLVALID } }
{ }
{ NONDISPL [ENTER|END] [NOSETMSG] }
{ }
{ ERRORS [CANCEL|RETURN] }
{ }
{ SPLIT { ENABLE } }
{ { DISABLE } }
{ }
{ NOCMD }
{ }
{ SUBTASK { PROTECT } }
{ { CLEAR } }
{ TSOGUI [QUERY|OFF|ON] }
{ REFLIST [UPDATE|NOUPDATE] }

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);
OR

CALL ISPLINK ('CONTROL ', operand);

Note: parameters that can appear in “operand” are:

{ 'DISPLAY '{ ,'LOCK ' } }
{ { ,'LINE ' [,line-number] } }
{ { ,'SM ' [,line-number] } }
{ { ,'REFRESH ' } }
{ { ,'SAVE '|'RESTORE ' } }
{ { ,'ALLVALID' } }
{ }
{ 'NONDISPL' [,'ENTER '|'END '] }
{ }
{ 'ERRORS ' [,'CANCEL '|'RETURN '] ['NOSETMSG'] }
{ }
{ 'SPLIT ' { ,'ENABLE ' } }
{ { ,'DISABLE ' } }
{ }
{ 'NOCMD ' }
{ }
{ 'SUBTASK ' { ,'PROTECT ' } }

BROWSE

Chapter 2. Description of ISPF Services 31

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



{ { ,'CLEAR ' } }
{ 'TSOGUI ' [,'QUERY '|'OFF '|'ON '] }
{ 'REFLIST ' [,'UPDATE '|'NOUPDATE'] }

ADDPOP/REMPOP Service Relation to Control Service
The ADDPOP service performs the equivalent of a CONTROL DISPLAY SAVE
prior to creating the pop-up window and the REMPOP service performs the
equivalent of a CONTROL DISPLAY RESTORE after removing the current pop-up
window. A dialog should not issue its own CONTROL DISPLAY SAVE/RESTORE
around an ADDPOP/REMPOP sequence.

Parameters
DISPLAY

Specifies that a display mode is to be set. The valid modes are LOCK, LINE,
REFRESH, SAVE, and RESTORE. LINE is in effect until the next display of an
ISPF panel. REFRESH occurs on the next display of an ISPF panel.

LOCK
Specifies that the next (and only the next) display output (such as displays by
the DISPLAY or TBDISPL service) is to leave the terminal user’s keyboard
locked. ISPF processes the next display output as though the user had
depressed the Enter key.

This facility can be used to display an “in process” message during a
long-running operation. It is the dialog developer’s responsibility to ensure
that the keyboard is unlocked by the subsequent display of a message or
panel. While the keyboard is locked, the screen is not protected from
immediate overlay by non-full-screen messages.

LINE
Specifies that terminal line-mode output is expected. This could be from a TSO
command or program dialog. The screen is completely rewritten on the next
ISPF full-screen write operation, after the line(s) have been written.

Notes:

1. CONTROL DISPLAY LINE is automatically invoked by the SELECT service
whenever a SELECT CMD request is encountered, unless the command
begins with a percent (%) sign. For example:
SELECT CMD(ABC) – causes automatic entry into line mode
SELECT CMD(%ABC)– no automatic entry into line mode.

The MODE parameter of the SELECT service, described later in this
chapter, can be used to override this use of the percent sign.

2. Upon return from a non-ISPF application that turns off full-screen mode, an
ISPF application can no longer be in full-screen mode. To assure a return to
full-screen mode in ISPF, the dialog should issue CONTROL DISPLAY
LINE.

line-number
This parameter specifies the line number on the screen where the line-mode
output is to begin. (The first line on the screen is line number 1.) The screen is
erased from this line to the bottom. If this parameter is omitted or coded as
zero, the value defaults to the end of the body of the currently displayed
panel.

CONTROL

32 z/OS V1R2.0 ISPF Services Guide

|
|
|



The line-number parameter must have an integer value. For a call, it must be a
fullword fixed binary integer. The parameter should specify a line value that is
not within three lines of the bottom of the logical screen. If the value is within
three lines of the bottom of the logical screen, a default line value is used. This
value is equivalent to the number of the bottom line of the screen, minus 3.

This parameter is meaningful only when entering line mode. It can be specified
with the SM keyword, since SM reverts to LINE if the Session Manager is not
installed. Once line mode has been set, subsequent attempts to set line mode
(without intervening full-screen output) are ignored. Accordingly, the
line-number, once set, cannot be changed.

For DBCS terminals, CONTROL DISPLAY LINE always clears the screen and
places the cursor on line 1, regardless of the line-number value.

SM
Specifies that the TSO Session Manager is to take control of the screen when
the next line-mode output is issued. If the Session Manager is not installed, the
SM keyword is treated as LINE.

Note: If you specify the SM keyword when graphics interface mode is active
(for example, a GRINIT service request has been issued, but a GRTERM
service request has not yet been issued), Session Manager does not get
control of the screen. In this case, the SM keyword is treated as LINE.

REFRESH
Specifies that the entire screen image is to be rewritten when the next
ISPF-generated full-screen write is issued to the terminal. This facility should
be used before or after invoking any program that uses non-ISPF services for
generating full-screen output. Be aware that REFRESH does not always result
in a return to full screen mode. See note following the description of the LINE
keyword.

SAVE
Used in conjunction with DISPLAY, TBDISPL, BROWSE, or EDIT processing to
indicate that information about the current logical screen, including control
information, is to be saved.

Use of the CONTROL service SAVE and RESTORE parameters allows
DISPLAY, TBDISPL, BROWSE, or EDIT processing to be nested. The
CONTROL service should be used to save and restore the environment at each
level. SAVE and RESTORE must be issued in pairs. Issue SAVE following the
screen display; issue RESTORE prior to the next request for the saved panel.

A command entered by the user in the command field of a displayed panel
causes the dialog manager to issue a SELECT service request for the dialog to
process the command. The current display environment is automatically saved
prior to invoking the designated dialog. That environment is subsequently
restored when the dialog ends.

The current DISPLAY environment that existed prior to the SAVE is not
available to a nested processing level.

Table display service system variables, ZTD*, are not saved as part of the
SAVE/RESTORE information. The values of these variables may be saved by
the dialog developer before invoking another table display and restored prior
to resuming processing of the initial table display. Also, the ZVERB variable is
not saved.

RESTORE
Specifies the restoration of information previously saved by CONTROL

CONTROL

Chapter 2. Description of ISPF Services 33

|
|
|
|
|



DISPLAY SAVE. The logical screen image is restored exactly as it appeared
when the SAVE was performed. Processing of the previous panel or table
display can then be resumed.

ALLVALID
Specifies that ISPF is to consider all displayed code points from X’40’ th X’FE’
as valid. This specification applies to all subsequent DISPLAY and TBDISPL
service requests within the current SELECT level only and remains in effect
until the SELECT level ends. It is not propagated to lower SELECT levels.

It is the responsibility of the dialog to insure that the code points are
displayable without a hardware error before issuing this option.

NONDISPL
Specifies that no display output is to be issued to the terminal when processing
the next panel definition. This option is in effect only for the next panel; after
that, normal display mode is resumed. Initializing the ZCMD variable to a
value may cause a panel to display after ’CONTROL NONDISPL’ has been
issued. This can be circumvented by using the COMMAND option of the
DISPLAY service which will cause the panel specified on the DISPLAY service
to be processed in CONTROL NONDISPL ENTER mode.

Note: NONDISPL mode stays active until the next panel definition is
processed; that is, until the PROC section of a panel display has been
completed. Error conditions, such as an error in the panels INIT section,
or an action coded in an INIT section, such as .RESP=ENTER, causes
panel processing to bypass the panels PROC section, leaving CONTROL
NONDISPL active until the PROC section of the next panel is processed.

ENTER
Specifies that the Enter key is to be simulated as the user response to the
NONDISPL processing for the next panel.

END
Specifies that the END command is to be simulated as the user response to the
NONDISPL processing for the next panel.

NOSETMSG
Specifies that the SETMSG Service message is to be suppressed when the panel
on which it was intended to be displayed is suppressed by the CONTROL
NONDISPL ENTER Service, but an error when processing the panel causes the
panel to be displayed. The NOSETMSG parameter is, in effect, only for the
next panel. the NOSETMSG parameter is ignored on the CONTROL
NONDISPL END Service.

ERRORS
Specifies that an error mode is to be set. The valid modes are CANCEL and
RETURN. If the RETURN mode is set, it applies only to the function that set it
using this, the CONTROL, service.

CANCEL
Specifies that the dialog is to be terminated on an error resulting from a return
code of 12 or higher from any service. A message is written to the ISPF log file,
and a panel is displayed to describe the particular error situation. In batch
mode, messages are written to the SYSTSPRT data set.

RETURN
Specifies that control is to be returned to the dialog on an error. System
variables ZERRxxxx, as described under “Return Codes from Services” on
page 13, contain the information for the message that describes the error. The

CONTROL

34 z/OS V1R2.0 ISPF Services Guide

|
|
|
|
|
|
|



message is not written to the ISPF log file unless TRACE mode is in effect, nor
is an error panel displayed. If a dialog developer wants to abend with STAE,he
must specify CONTROL ERRORS RETURN because specification of
CONTROL ERRORS CANCEL nullifies the developer’s requested STAE.

SPLIT
Specifies the user’s ability to enter split-screen mode, as defined by the
ENABLE or DISABLE keyword.

ENABLE
Specifies that the user is to be allowed to enter split-screen mode. Split-screen
mode is normally enabled. It is disabled only if explicitly requested by use of
the CONTROL service. It remains disabled until explicitly re-enabled by the
CONTROL service. Because SPLIT commands are not supported when ISPF is
running in the batch environment, issuing CONTROL SPLIT ENABLE results
in a severe error (return code 20).

DISABLE
Specifies that the user’s ability to enter split-screen mode is to be disabled,
until explicitly enabled by the CONTROL service. If the user is already in split
screen mode, a return code of 8 is issued and split-screen mode remains
enabled.

NOCMD
Specifies that for the next displayed panel only, any command entered on the
command line or through use of a function key is not to be honored. NOCMD
is in effect for any redisplay of the panel.

SUBTASK
This option pertains to multi-task program dialogs that are invoked as TSO
commands by the CMD interface of the SELECT service.

PROTECT
Specifies that ISPF is to establish an ESTAE routine to trap and ignore the
abend that occurs when ISPF tries to POST a subtask that no longer exists.

If an abend does occur on a POST when the ESTAE protection is in effect, ISPF
will return to a wait state until another service request occurs or the
application terminates.

The new ESTAE will be in effect only around the POST, but once it is
requested, it will be established each time ISPF is to POST the application,
until the application cancels the protection request or the current SELECT level
is terminated.

The scope of the ESTAE protection on the POST is strictly within the current
SELECT level. It will not be automatically propagated to another SELECT level
but must be requested again if it is to be used.

Any tables or other files that are opened by ISPF on behalf of the detached
subtask (for example, by LIBDEF, table services, or file tailoring) will remain
open until the application is terminated or the appropriate DM component
service is used to close them. Thus, if such a subtask is to be restarted after
being detached, it must have the logic to handle the situation when a table, or
other file, it tries to open is already opened on entry to that routine.

Although both the parent task and subtask of a dialog can make DM
component service calls, ISPF does not support asynchronous service requests.
In other words, DM component service calls cannot be made while a service is
in process for another caller.

CONTROL

Chapter 2. Description of ISPF Services 35



Because the ESTAE protection is provided only on the POST of the DM
component service caller, the following rule must be followed by the
application:
v A subtask that can be detached while a DM component service that it

invoked is in process cannot use any storage acquired under its TCB in the
parameter list of a service call. That is, all parameters used in service calls
must reside in storage that will not be released when the DETACH for the
subtask is issued. Furthermore, any other resource which can be used by
ISPF on behalf of the subtask must not be released while a DM component
service is in process.

The parent task should acquire all the storage to be used by the subtask and
pass it as a parameter on the ATTACH. Thus, all local variables to be used by
the subtask would be declared in a DSECT and be based on the storage
acquired by the parent task. This will prevent the possibility of an abend
caused by an attempt by ISPF to access storage that was released and will still
allow the subtask to use all DM component services.

CLEAR
Specifies that ESTAE protection on the POST of a subtask is to be terminated.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

TSOGUI

QUERY
Gives the current status of the ISPF/TSO window:

Return code = 0
Either the user is not running ISPF GUI with TSO line mode
support or TSOGUI is OFF. All TSO input and output is directed to
the 3270 session.

Return code = 1
All TSO line mode output is displayed in the ISPF/TSO window
and line mode input must be entered into the ISPF/TSO window’s
input field.

OFF
Specifies that the ISPF/TSO window is suspended and all full screen and
line mode data appear in the 3270 window until CONTROL TSOGUI ON
is issued.

ON
Specifies that the ISPF/TSO window is to be resumed and all TSO line
mode output and input is directed to the ISPF/TSO window.

notes

1. CONTROL TSOGUI is ignored if you are not running ISPF GUI with
TSO line mode support.

2. CONTROL TSOGUI defaults to ON during ISPF GUI session
initialization.

REFLIST

CONTROL

36 z/OS V1R2.0 ISPF Services Guide



UPDATE
Enable ISPF/PDF allocations to add entries to the data set and library
reference lists.

NOUPDATE
Do not allow ISPF/PDF allocations to add entries to the data set and
library reference lists.

notes

1. The CONTROL REFLIST command is used to enable or disable
automatic updates to the reference lists. It is intended to be used around
calls to ISPF/PDF services that normally cause entries in the reference lists.
These services include EDIT, BROWSE, VIEW, and LMINIT.

2. When NOUPDATE is specified, the reference list is not updated, even if
the user settings request updates. This is so programs can insure that they
do not fill up the reference list with names that the user would never want
to see, such as temporary or intermediate files.

3. The program invoking the CONTROL REFLIST NOUPDATE command
to turn off reference list updates must specify CONTROL REFLIST
UPDATE before it exits. It is recommended that you issue a CONTROL
REFLIST NOUPDATE immediately before the service that would normally
update the reference list (such as LMINIT, EDIT, or BROWSE) and issue a
CONTROL REFLIST UPDATE immediately after the service returns.

4. There is only one CONTROL REFLIST setting for each logical screen (or
split screen), and using this command can affect updates in the logical
screen after the invoking program ends.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Split-screen mode already in effect. Applies only to a SPLIT DISABLE
request. Split-screen mode remains enabled.

20 Severe error.

Example
Set the error processing mode to allow the dialog function to process return codes
of 12 or higher.
ISPEXEC CONTROL ERRORS RETURN

or

Set the program variable BUFFER to contain:
CONTROL ERRORS RETURN

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('CONTROL ','ERRORS ','RETURN ');

CONTROL

Chapter 2. Description of ISPF Services 37



DISPLAY – Display Panels and Messages
The DISPLAY service retrieves a panel definition, performs any pre-display
processing specified on the panel definition, initializes variable panel fields from
the corresponding dialog variables, and displays the panel on the screen. A
message can optionally be displayed with the panel. If the optional message is to
be displayed in a message pop-up window, the position of the message pop-up
window can be indicated by the MSGLOC parameter.

Note: When running in GUI mode, the MSGLOC parameter is ignored.

After the panel has been displayed, you can enter information and press the Enter
key. All input fields are automatically stored into dialog variables of the same
name, and the )PROC section of the panel definition is then processed. If any
condition occurs that causes a message to be displayed (verification failure,
MSG=value condition in a TRANS, or explicit setting of .MSG), processing
continues to the )HELP or )END section. The )REINIT section is then processed if
it is present. The panel is then redisplayed with the first, or only, message that was
encountered.

When the user presses the Enter key again, all input fields are stored and the
)PROC section is again processed. This sequence continues until the entire )PROC
section has been processed without any message conditions being encountered.
The panel display service finally returns, with a return code of 0, to the dialog
function that invoked it.

Alternatively, when a panel is displayed, the user can enter a CANCEL, END,
EXIT, or RETURN command. If the input fields are not in a scrollable area, they
are stored and the )PROC section is processed. In scrollable areas, only the input
fields that have been displayed will be stored. No messages are displayed, even if
a MSG condition is encountered. The panel display service then returns to the
dialog function with a return code of 8.

Command Invocation Format
ISPEXEC DISPLAY [PANEL(panel-name)]

[MSG(message-id)]

[CURSOR(cursor-field-name)]

[CSRPOS(cursor-position)]

[COMMAND(stack-buffer-name)]

[RETBUFFR(ret-buffer-name)]

[RETLGTH(ret-length-name)]

[MSGLOC(message-field-name)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);
OR

CALL ISPLINK ('DISPLAY ' [,panel-name]

[,message-id]

[,cursor-field-name]

DISPLAY

38 z/OS V1R2.0 ISPF Services Guide



[,cursor-position]

[,stack-buffer-name]

[,ret-buffer-name]

[,ret-length-name]

[,message-field-name]

Parameters
panel-name

Specifies the name of the panel to be displayed.

message-id
Specifies the identification of a message to be displayed on the panel.

cursor-field-name
Specifies the name of the field where the cursor is to be placed.

If cursor-position is specified both by this parameter and by setting the control
variable .CURSOR in the )INIT or )REINIT section of the panel being
displayed, the value in .CURSOR overrides this parameter.

cursor-position
Specifies the character position within the field where the cursor is to be
placed. This position applies regardless of whether the initial cursor placement
was specified in the CURSOR calling sequence parameter, the .CURSOR
control variable in the )INIT or )REINIT section of a panel, or is the result of
default cursor placement. If cursor-position is not specified or is not within the
field, the default is 1.

If cursor-position is specified both by this parameter and by setting the control
variable .CSRPOS in the )INIT or )REINIT section of the panel being displayed,
the value in .CSRPOS overrides this parameter.

stack-buffer-name
Specifies the name of a variable containing the chain of commands passed by
the dialog to ISPF for execution. The maximum length of the actual command
chain within this variable is 255.

ret-buffer-name
Specifies the name of a variable in which the unprocessed portion of the
command chain is stored should an error occur before the complete chain is
processed. This includes the command being processed when the error is
detected.

ret-length-name
Specifies the name of a variable in which the length of the unprocessed portion
of the command chain is stored should an error occur before the complete
chain is processed. This includes the command being processed when the error
was detected.

message-field-name
Used to position the message pop-up window. If the application specifies this
parameter, the dialog manager positions the message pop-up relative to the
named field.

DISPLAY

Chapter 2. Description of ISPF Services 39



If this parameter is omitted and a message is displayed in a message pop-up
window, the window is displayed at the bottom of the logical screen or below
the active ADDPOP pop-up window if one exists.

For upward compatibility, this parameter should be specified only when the
message will display in a pop-up window.

Note: When running in GUI mode, this parameter is ignored.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

All of the parameters are optional. The panel-name and message-id parameters are
processed as follows:
v If panel-name is not specified, an error occurs unless a previous panel was

displayed at the same nesting level.
v If panel-name is specified and message-id is not specified, the panel is retrieved,

the )INIT section, if it exists, is processed, and the panel is displayed without a
message.

v If panel-name and message-id are both specified, the panel is retrieved, the
)INIT section, if it exists, is processed, and the panel is displayed with the
specified message, which is typically a prompt or confirmation message.

v If panel-name is not specified and message-id is specified, the )REINIT section, if
it exists, is processed and the current panel is overlaid with a message, which is
typically an error message.

v If neither panel-name nor message-ID is specified, the )REINIT section, if it
exists, is processed and the current panel is redisplayed without a message. Use
the CONTROL service to save and restore the environment when a display
series, in which the panel-name is not specified, is to be interrupted by another
DISPLAY, TBDISPL, BROWSE, or EDIT operation.

v When a panel is displayed before invoking EDIT/VIEW, invoking the DISPLAY
service without a panel name from within the EDIT/VIEW service can produce
unpredictable results. The DISPLAY environment might be altered by the
EDIT/VIEW service. Do not expect the DISPLAY environment that existed
before invoking the EDIT/VIEW service to remain unchanged.

In the first two situations, processing of the panel definition proceeds normally,
through the )INIT section, prior to display of the panel. If .MSG, .CURSOR, or
.CSRPOS is set in the )INIT section, that setting overrides an initial message or
cursor placement passed by the calling sequence parameters.

In the third and fourth situations, processing of the )INIT section is bypassed, and
there is no automatic initialization of variables in the panel body, nor in the
attribute section. However, the )REINIT section is processed. The )REINIT section
provides for specified variables or attributes to be reset prior to a redisplay.
Typically, the )REINIT section contains:
v Field attribute overrides, specified with the .ATTR control variable.
v Changes to displayed panel fields, specified in assignment statements and the

REFRESH statement.

DISPLAY

40 z/OS V1R2.0 ISPF Services Guide



Each time the DISPLAY service is invoked, the )PROC section of the panel is
processed after the terminal user enters a response to the display. Therefore, it is
recommended that all reinitialization logic be placed in the )REINIT section, rather
than at the end of the )PROC section.

Using the COMMAND Option
The COMMAND option allows a dialog to pass a chain of commands in the
variable specified by stack-buffer-name to ISPF for execution. The panel specified
on the DISPLAY service request is processed in CONTROL NONDISPL ENTER
mode. In addition, when ENTER is simulated by ISPF, the command chain from
the stack-buffer-name variable is executed as though it were either typed in on the
command line of the panel by the user or entered through a function key When
the command chain is exhausted or one of the commands cannot be found in the
active set of command tables, processing terminates and control returns directly to
the dialog that issued the DISPLAY COMMAND call, except for those specific
error conditions described below.

In case of an error return from the DISPLAY COMMAND service, the function
pool variable specified by ret-buffer-name contains the unexecuted portion of the
command chain, starting with the first command that cannot be found in the active
set of command tables. If all commands have been processed, the variable will be
blank.

The ret-length-name variable contains the length of the string in the ret-buffer-name
variable. If all commands have been processed, either by the DISPLAY
COMMAND dialog or a dialog invoked to process a command in the stack, the
length will be zero.

One or more of the commands in the command chain can be processed by the
dialogs initiated from previous valid commands in the chain. Processing those
commands will be the same as if the command chain had been entered from the
primary input field of the dialog’s panel. Errors encountered because of these
commands must be handled by the dialog.

There are two cases in which the panel specified on the original DISPLAY
COMMAND service request is displayed:
v First, when a command error, which results in a message such as “command

NOT ACTIVE” or “INVALID command PARM” occurs, the current panel is
presented, along with the corresponding message, in normal DISPLAY mode.
This occurs even if the current panel is the panel specified on the original
DISPLAY COMMAND call. To return to the dialog, the user has to enter the
END command or an equivalent.

v The second case is when a SPLIT or SPLITV command is executed from the
stack as input from the original panel. That panel is displayed on part of the
physical screen. Control is not immediately returned to the dialog if execution of
the command chain results in SPLIT, SPLITV, or SWAP. In this case the user
must re-activate the original screen, such as enter SWAP, to give the dialog
control once again.

Notes:

1. If the panel displayed with the COMMAND option has its primary input
field initialized to a non-blank value, that string will not be concatenated to
the end of the command chain.

2. A CONTROL NOCMD pending at the time the DISPLAY COMMAND
service is issued will be cancelled.

DISPLAY

Chapter 2. Description of ISPF Services 41



3. ISPF does not support the jump function when the COMMAND option is
being executed. ISPF deletes any equal signs (=) preceding a command, but
the command remains in the stack.

Return Codes
The following return codes are possible:

0 Normal completion.

For the COMMAND option, the ret-buffer-name is set to blanks and the
ret-length-name is set to zero. Passing an empty command chain buffer
also results in a normal completion.

4 One or more commands in the stack could not be found in the active set of
command tables.

8 User requested termination using the END or RETURN command. If
CANCEL and EXIT are requested from a panel displayed using the
DISPLAY service call and the panel was defined with the dialog tag
language (DTL), the dialog manager returns the command in ZVERB and
sets a return code of 8 from the display screen.

12 The specified panel, message, message location field, or cursor field could
not be found.

16 Truncation or translation error in storing defined variables.

20 Severe error.

Example 1
Panel definition XYZ specifies display of variables AAA and KLM as input fields.
Using this definition, invoke services to display these variables at the terminal and
superimpose, on line 1, the short form text of message number ABCX013. Place the
cursor, on the display, at the beginning of input field KLM, ready for entry of data
by the person at the terminal.
ISPEXEC DISPLAY PANEL(XYZ) MSG(ABCX013) CURSOR(KLM)

or Set the program variable BUFFER to contain:
DISPLAY PANEL(XYZ) MSG(ABCX013) CURSOR(KLM)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('DISPLAY ','XYZ ','ABCX013 ','KLM ');

Example 2
Pass a command stack to ISPF to cause:
v The display screen to split horizontally at the line on which the cursor was

positioned when the DISPLAY COMMAND was issued
v Control to return to the top screen (SWAP)
v A command, CHECK, to be issued on the top screen (assume CHECK does not

exist in the active set of command tables).

Function pool variable STACKA contains the command string:
SPLIT;SWAP;CHECK

DISPLAY

42 z/OS V1R2.0 ISPF Services Guide



Issue:
ISPEXEC DISPLAY PANEL(PANA) COMMAND(STACKA) RETBUFFR(BUFFA) RETLGTH(LGTHA)

or alternately
CALL ISPLINK ('DISPLAY ','PANA ',' ',' ',' ','STACKA ','BUFFA ','LGTHA ');

Because ISPF cannot find the command “CHECK” in a command table, processing
of the command stack terminates at that point. ISPF places the unprocessed
command, CHECK, in variable BUFFA, and sets variable LGTHA to 5. The
DISPLAY service terminates with a return code of 4.

Example 3
Pass a command stack to ISPF to cause the:
v Function key definition panel, containing the INVALID COMMAND message, to

display
v Primary input field (PIF) of the panel to be set to CHECK
v Alarm to sound.

Function pool variable STACKA contains the command string:
KEYS;CHECK

Issue:
ISPEXEC DISPLAY PANEL(PANA) COMMAND(STACKA) RETBUFFR(BUFFA) RETLGTH(LGTHA)

or alternately
CALL ISPLINK ('DISPLAY ','PANA ',' ',' ',' ','STACKA ','BUFFA ','LGTHA ');

ISPF cannot find the command “CHECK” in any active command table. Because
the unidentified command error is encountered by the KEYS dialog, rather than
the DISPLAY service, it is that dialog’s responsibility to process the error. In this
case, the KEYS dialog displays a message indicating that CHECK was not found.
Upon return from the KEYS dialog, the DISPLAY service sets the return buffer,
BUFFA, to blanks, sets variable LGTHA to 0, and terminates with a return code of
0.

Example 4
Pass a command stack to ISPF to cause:
v PANA, containing the INVALID PFSHOW PARM message, to display
v The alarm to sound.

Function pool variable STACKA contains the command:
PFSHOW COLOR

Issue:
ISPEXEC DISPLAY PANEL(PANA) COMMAND(STACKA) RETBUFFR(BUFFA) RETLGTH(LGTHA)

or alternately
CALL ISPLINK ('DISPLAY ','PANA ',' ',' ',' ','STACKA ','BUFFA ','LGTHA ');

COLOR is not a valid parameter on the PFSHOW command. Therefore, PANA
displays. In this case, the user exits from PANA normally (ENTER, END, or
RETURN). The DISPLAY service returns control to the dialog with a return code of
0.

DISPLAY

Chapter 2. Description of ISPF Services 43



Example 5
The following DISPLAY request displays message TSTA110 in a message pop-up
window that permits interaction with the underlying panel. The message pop-up
window is positioned relative to the field FLD1.
PROC 0
ISPEXEC DISPLAY PANEL(A) MSG(TSTA110) MSGLOC(FLD1)

Using the following message definition for TSTA110
TSTA110 .WINDOW=NORESP
'ENTER NUMERIC DATA'

Results in:

DSINFO – Data Set Information Dialog Service
The DSINFO service returns assorted information about a particular data set in
dialog variables in the function pool. The information returned is the same as that
displayed when you use ISPF Option 3.2 or Option 3.4 commands. Additionally,
DSINFO returns the unformatted DSCB format1. DSINFO does not require an
LMINIT to be performed first.

Command Invocation Format
ISPEXEC DSINFO DATASET(dsname)

[VOLUME(serial)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);
OR

CALL ISPLINK ('DSINFO ' [,dsname]

[,serial]

PANEL A

FIELD===> FLD1
┌────────────────────┐
| |
| ENTER NUMERIC DATA |
| |
└────────────────────┘

DISPLAY

44 z/OS V1R2.0 ISPF Services Guide



Parameters
dsname

Specifies the data set name, in TSO syntax, of the data set that you want
information about.

serial
Specifies the serial number of the volume on which the data set can be found.
This is only required if the data set is uncataloged.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

The DSINFO service saves the following dialog variables in the function pool:

ZDSVOL First or only volume

ZDS#VOLS Number of volumes

ZDSDEVT Device type

ZDSORG Data set organization

ZDSRF Record format

ZDSLREC Logical record length

ZDSBLK Block size

ZDSSPC Primary space units

ZDS1EX Primary space allocation

ZDS2SPC Secondary space units

ZDS2EX Secondary space allocation

ZDSDSNT Data set name type

ZDSSEQ Compressible YES/NO

ZDSCDATE Creation date

ZDSXDATE Expiration date

ZDSRDATE Referenced date

ZDSTOTA Allocated space units

ZDSTOTU Used space units

ZDSEXTA Allocated extents

ZDSEXTU Used extents

ZDSDIRA Allocated directory blocks

ZDSDIRU Used directory blocks

ZDSDIR PDSE directory blocks

ZDS#MEM Number of members

ZDSPAGU Pages used (PDSE)

ZDSPERU Percent used (PDSE)

DSINFO

Chapter 2. Description of ISPF Services 45



ZDSMC Management class

ZDSSC Storage class

ZDSDC Data class

ZDSCB1 Format 1 data control block

ZDSVTAB Volume table (contains all of the volume names for
a multivolume set)

Return Codes
The following return codes are possible:

0 Normal completion.

8 User requested data set was not found.

12 One of the following:
v FAMS error
v Obtain error
v Error obtaining directory information

20 Severe error.

Example
The following example shows an invocation of DSINFO to obtain information
about a cataloged data set.

Command Invocation
ISPEXEC DSINFO DATASET(DSNAME)

Call Invocation
CALL ISPLINK('DSINFO ',DSNAME);

or Set the program variable BUFFER to contain:
BUFFER = 'DSINFO DATASET(DSNAME)';

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

EDIF – Edit Interface
The Edit Interface (EDIF) service provides edit functions for data accessed through
dialog-supplied I/O routines. The invoking dialog must perform all
environment-dependent functions such as file allocation, opening, reading, writing,
closing, and freeing. The dialog is also responsible for any Enqueue/Dequeue
serialization that is required. With the dialog providing the I/O routines, EDIF
allows you to:
v Edit data other than partitioned data sets or sequential files such as subsystem

data, and in-storage data.
v Do preprocessing and post-processing of the data being edited.

The invoking dialog must provide addresses to routines that:
v Read the data sequentially from beginning to end, returning to Edit one record

on each invocation.

DSINFO

46 z/OS V1R2.0 ISPF Services Guide



v Write the data sequentially from beginning to end, accepting one record from
Edit on each invocation.

v Perform processing for the MOVE, COPY, CREATE, REPLACE, and EDIT
primary commands. If this routine is not specified, ISPF processes these
commands.

All addresses must be 31-bit addresses, and the routines must have an addressing
mode (AMODE) of 31.

When an Edit session is operating in recovery mode, a record ofyour interactions is
automatically recorded in an PDF-controlled data set.Following a system failure,
you can use the record to recover the data you were editing.

Note: Dialogs that invoke the EDIF service may invoke the EDIREC service first to
determine if a pending recovery condition exists.

A dialog using EDIF can place data into the ZEIUSER dialog variable in the shared
pool. When the system initializes the recovery data set, the system also saves the
data in ZEIUSER in the Edit recovery table as an extension variable. This is done if
RECOVERY is ON when first entering Edit or after you use the SAVE command.
This data is then made available in dialog variable ZEIUSER at the time edit
recovery is processed.

Command Invocation Format
You cannot use command procedures to invoke this service.

Call Invocation Format
The format for invoking EDIF can be different depending on whether you want to
process a pending edit recovery. If you do not want to process a pending edit
recovery, the format is:
CALL ISPLINK ('EDIF ', [data-name] ,profile-name

,rec-format ,rec-len

,read-routine, write-routine

,[cmd-routine] ,[dialog-data]

,[edit-len] ,[panel-name]

,[macro-name] ,[format-name]

,['YES '|'NO ']

,['YES '|'NO ']

,[parm–var] );

You must use the EDIF service to recover data edited in a previous EDIF session.
You must invoke the EDIREC service first to see if a recovery is pending. If you
want to process a pending recovery, use the following format for EDIF, specifying
YES for the recovery-request parameter.
CALL ISPLINK ('EDIF ' ,[data-name] ,' '

,[rec-format] ,[rec-len]

,read-routine ,write-routine

,[cmd-routine] ,[dialog-data]

EDIF

Chapter 2. Description of ISPF Services 47

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



,' ' ,' ' ,' ' ,' ' ,' '
,'YES ');

Parameters
data-name

This parameter allows you to specify a data name for the source data to be
edited. This name appears in the title line of the default Edit panel. It is also
the target data name for an edit recovery table entry when edit recovery is
active. This name must not have any embedded blanks, and its maximum
length is 54 characters. This name is stored in ZDSNT in the function pool.

profile-name
The name of the edit profile to be used. This parameter is required when
recovery-request = NO (or is not specified); otherwise, it is not allowed.

rec-format
The record format: F - fixed, V - variable. This parameter is required when
recovery-request = NO (or is not specified); otherwise, it is optional, but it
must be the same record format that was specified when recovery was initiated
for the data.

rec-len
The record length, in bytes. It must be a positive numeric value between 10
and 32760, inclusive. For variable record format, this is the maximum record
length. This parameter is required when recovery-request = NO (or is not
specified); otherwise, it is optional, but it must be the same record length that
was specified when recovery was initiated for the data.

read-routine
A fullword address indicating the entry point of a dialog-supplied read routine
(required). See “Read Routine” on page 50 for more information about this
parameter.

write-routine
A fullword address indicating the entry point of a dialog-supplied write
routine (required). See “Write Routine” on page 50 for more information about
this parameter.

cmd-routine
A fullword address indicating the entry point of a dialog-supplied routine that
processes the MOVE, COPY, CREATE, REPLACE, and EDIT primary
commands. See “Command Routine” on page 51 for more information about
this parameter. If this parameter is not specified, ISPF processes these
commands.

dialog-data
A fullword address indicating the beginning of a dialog data area. This address
is passed to the dialog-supplied routines. If no address is supplied, zeroes are
passed to the dialog routines. This data area provides a communication area
for the dialog.

edit-len
The length, in bytes, of the data to be displayed for editing. This parameter
indicates that the data records should be considered to have a length shorter
than rec-len during editing. Thus, the dialog may include data in the record
that is not accessible for editing.

EDIF

48 z/OS V1R2.0 ISPF Services Guide



Edit-len must be a numeric value between 10 and 32760, inclusive, and must
be less than or equal to parameter rec-len. Rec-len is the default. If the edit-len
parameter is specified, the data that is not displayed are the bytes from
(edit-len +1) to rec-len. That means the inaccessible record data is at the end of
the record.

The edit-len parameter is optional when recovery-request = NO (or is not
specified); otherwise, it is not allowed. The edit-len parameter is not allowed
when format-name is specified.

panel-name
The name of the panel to use for displaying the data. This parameter is
optional when recovery-request = NO (or is not specified); otherwise, it is not
allowed. The default is the standard Edit data display panel. Refer to ISPF
Planning and Customizing for information about developing a customized panel.

macro-name
The name of the initial macro to be executed. This parameter is optional when
recovery-request = NO (or is not specified); otherwise, it is not allowed. The
default is no initial macro. Refer to ISPF Edit and Edit Macros for more
information on macros.

format-name
The name of the format to be used to reformat the data. This parameter is
optional when recovery-request = NO (or is not specified); otherwise, it is not
allowed. The default is no format. This parameter is provided to support the
IBM 5550 terminal using the Double-Byte Character Set (DBCS). This
parameter is not allowed when the edit-len parameter is specified.

YES|NO (mixed-mode)
Specifies whether the data is treated as mixed-mode DBCS data. This
parameter is optional when recovery-request = NO (or is not specified);
otherwise, it is not allowed. If YES is specified, the EDIF service treats the data
as mixed-mode DBCS data. If NO (the default) is specified, the data is treated
as EBCDIC (single-byte) data. This parameter is provided to support the IBM
5550 terminal using the Double-Byte Character Set (DBCS).

YES|NO (recovery-request)
Specifies whether to process a pending edit recovery that was being edited
with the EDIF service when a system failure occurred. If YES is specified, the
edit recovery should proceed. This function is similar to the EDREC service
with the PROCESS option. If YES is specified to process the edit recovery, you
must specify the read routine and write routine, but you must not specify
profile name, edit-len, panel-name, macro-name, format-name and
mixed-mode. If NO (the default) is specified, no edit recovery is processed;
EDIF edits the specified data.

parm-var
The name of an ISPF variable that contains parameters which are to be passed
to the initial macro specified by macro-name. The variable value must not
exceed 200 bytes in length. If no macro name is specified, parm-var must be
blank or not specified.

Dialog-Supplied Routines
All dialog-supplied routines are invoked using standard linkage. All addresses
must be 31-bit addresses, and the addressing mode (AMODE) of the routines must
be AMODE=31.

EDIF

Chapter 2. Description of ISPF Services 49

|
|
|
|
|



An EDIF read or write routine must have an assembler interface to be used in a
call to EDIF.

The dialog-supplied read, write, and command processing routines are called
directly by ISPF at the same task level (TCB) that displays ISPF screens. If you
need to ensure that your program runs at the same task level as the routines, you
should use the SELECT PGM( ) service to start your program. This may be a factor
if your program expects to create or share data spaces or other task-specific
resources between the main program and the read, write, or command routines.

Note: The read, write, and command exits cannot be written in languages that use
the Language Environment (LE) run time environment.

Read Routine
EDIF calls the read routine repeatedly to obtain all of the data records to be edited
at the beginning of the Edit session. This routine is also called to obtain data
records for the MOVE and COPY commands when the dialog is handling the
processing for these commands. The dialog-supplied read routine is invoked with
the following parameters:
v Fullword pointer to record data read (output from read routine)
v Fullword fixed binary data length of record read if rec-format is ‘V’
v Fullword fixed binary request code. Request settings are as follows:

0 Read next record
1 First read request

v Fullword dialog data area address.

Write Routine
EDIF calls the write routine repeatedly to write the data records, for example,
whenever data changes are to be saved with the SAVE, END, and RETURN
commands, and the jump function. EDIF also calls the write routine to write data
records for the CREATE and REPLACE commands when the dialog is handling the
processing for these commands. The write routine is given flags that indicate the
source and change status for each record.

The dialog-supplied write routine is invoked with the following parameters:
v Fullword pointer to record data to be written
v Fullword fixed binary data length of record to be written if rec-format is ‘V’.

This is the length of the non-blank portion of the record. The entire record with
trailing blanks up to the maximum rec-len is available.

v Fullword of source and change bits for the record. The bit representation is as
follows:

EDIF

50 z/OS V1R2.0 ISPF Services Guide

|
|
|
|
|
|

|
|



Source bits:
1 = original record
2 = internal move
3 = internal copy/repeat
4 = external move
5 = external copy
6 = text inserted
7 = typed inserted

Change bits:
8 = record changed
9 = data overtyped

10 = change command
or overlay change

11 = columns shifted
12 = data shifted
13 = text change
14 = record renumbered

15-32 = unused

(Move line command)
(Copy/Repeat line commands)
(MOVE primary command)
(COPY primary command)
(TE line command)
(Insert line command)

(global bit; set for all changes)

(CHANGE primary command)
(Overlay line command)
((,((,),)) line commands)
(<,<<,>,>> line commands)
(TE, TF, TS line commands)

Multiple bits may be set on, indicating that more than one modification has
occurred for the record. For example, a data record that is inserted by using the
Insert line command and is later included in a text flow operation would have
bits 7 (typed inserted), 8 (change), 9 (data overtyped) and 13 (text changed)
turned on.

Records read in for the initial display are flagged as original records. Whenever
there is hidden data, the inaccessible portion of inserted records contains blanks.
Records are copied in their entirety; that is, including both the visible and
hidden portions of the data. Deleted records are not presented to the write
routine.

v Fullword fixed binary request code. Request settings are as follows:

0 Write the next record
1 First write request
2 Last write request (final data record provided)
3 First and last write request (only one data record)
4 No data records to write (all records have been deleted)

v Fullword dialog data area address.

Command Routine
The dialog-supplied command routine, when specified, processes the MOVE,
COPY, CREATE, REPLACE, and EDIT primary commands. The command routine
is invoked with the following parameters:
v Fullword fixed binary function code word. Decimal values of function settings

are as follows:

1n Move
2n Copy
3n Create
4n Replace
5n Recursive edit

EDIF

Chapter 2. Description of ISPF Services 51



where n is 0 (beginning of function), 1 (successful completion), or 2
(unsuccessful completion). This n value will always be 0 for a recursive Edit
function; that is, the Edit request code will be 50.

v Fullword dialog data area address.

To access parameters that can follow the command, the command routine must
access the ZCMD dialog variable from the SHARED variable pool.

For a MOVE, COPY, CREATE, or REPLACE, the command routine initiates the
processing for the requested function. When the return code from the command
routine is zero, EDIF calls the read or write routine to transfer the data. After the
read or write is completed, the command routine is called once more to handle any
termination processing that may be required for the requested function. For
example, the MOVE function would need to delete the data that was moved.

For the EDIT command, the command routine must perform all processing
required to effect the desired results for the purposes of the dialog. For example,
the dialog can consider the EDIT command to be an invalid command. The
command routine is called only once for each EDIT command.

Return Codes
When a dialog routine terminates with a return code (12 or higher or an
unexpected return code), the dialog can issue a SETMSG to generate a message on
the next panel display. If the dialog does not set a message, the EDIF service will
issue a default message.

Read Routine
0 Normal completion.

8 End of data records (no data record returned).

16 Read error. If a read error is encountered when the system builds the initial
edit display, the EDIF service terminates with a return code of 20.
Otherwise, the edit data is redisplayed.

20 Severe error. (The EDIF service terminates immediately with a return code
of 20.)

Write Routine Return Codes
0 Normal completion.

16 Output error, return to Edit mode.

20 Severe error. (The EDIF service terminates immediately with a return code
of 20.)

Command Routine Return Codes
0 Normal completion.

4 ISPF should process the requested function.

12 Command deferred; retain the command on the Command line. Edit data
is redisplayed.

20 Severe error. (The EDIF service terminates immediately with a return code
of 20.)

EDIF

52 z/OS V1R2.0 ISPF Services Guide



EDIF Service Return Codes
0 Normal completion, data saved.

4 Normal completion, data not saved.

16 Unexpected return code received from a dialog-supplied routine. When an
unexpected return code is received, the EDIF service terminates
immediately with a return code of 16.

20 Severe error; unable to continue.

After the Edit session has been terminated, control is returned to the invoking
dialog with a return code indicating the completion status.

Example
This example invokes the EDIF service to edit data called EDIFDSN, which has a
fixed-record format with a record length of 80 characters. An edit profile
(EDIFPROF), read routine (RDRTN), write routine (WRRTN), and command
routine (CMDRTN) are supplied, as is a dialog data area (MYDATA).

Call Invocation
CALL ISPLINK ('EDIF ','EDIFDSN ','EDIFPROF ','F ',80,

RDRTN,WRRTN,CMDRTN,MYDATA);

For a more complete example of using EDIF, including dialog-supplied I/O
routines and source code, see the ISPF Dialog Developer’s Guide and Reference

EDIREC - Initialize Edit Recovery
The EDIREC service initializes an edit recovery table (ISREIRT)for use by the EDIF
service and determines whether recoveryfrom the EDIF service is pending.
EDIREC also allows you to cancel or defer the recovery of data modifications.

Command Invocation Format
You cannot use command procedures to invoke this service.

Call Invocation Format
CALL ISPLINK ('EDIREC ', {'INIT '[,command-name]}

{'QUERY '}

{'CANCEL '}

{'DEFER '});

Parameters
INIT

The edit recovery table for EDIF should be initialized in the user profile library
if one does not already exist for the current application.

command-name
A command procedure (CLIST or REXX exec) or a program written as a
command that initializes the EDIF table. If this parameter is omitted, the INIT
option invokes an PDF-supplied command (ISREIRTI) that creates an 8-row

EDIF

Chapter 2. Description of ISPF Services 53



EDIF recovery table that permits eight levels of concurrent Edit sessions with
recovery active. The Edit sessions may be due to recursion or split-screen
usage.

If you specify an application-supplied command with the INIT option, you
should pattern the command after ISREIRTI. It can create a different number of
rows, use a different naming convention for the backup data sets, or specify
“keep” (instead of “delete”) as the backup data set disposition. The format of
the EDIF recovery table must be the same as that specified in ISREIRTI.

QUERY
The EDIF recovery table should be searched for a pending recovery. When the
QUERY option is specified, EDIREC scans the EDIF recovery table for an entry
containing a recovery pending condition. If an entry is found (return code 4),
the dialog must then call EDIF with (recovery-request = YES) to recover the
data, or call EDIREC with the CANCEL or DEFER option to dispose of the
pending recovery condition.

The following variables are stored in the dialog function pool when EDIREC is
called with the QUERY option and recovery is pending (return code 4):
v ZEIBDSN - Backup data name
v ZEITDSN - Target data name
v ZEIROW - Row number of entry in the recovery table.

The dialog can check the variables and use them to display information to the
user. The dialog must not change them. If EDIREC QUERY indicates that
recovery is not pending, the above variables are not meaningful.

ZEIUSER is an extension variable in the EDIF recovery table that isprovided to
contain user data. Whatever data is in dialog variable ZEIUSER in the shared
pool is saved to the ZEIUSER variable in the EDIF recovery table when the
recovery data set is initialized. This is done if RECOVERY is ON when first
entering Edit or after using the SAVE command.

When EDIREC is called with the QUERY option and the return code is 4,
indicating that recovery is pending, the data is read out of ZEIUSER in the
table and returned to ZEIUSER in the shared and function pools. If recovery is
not pending, this variable is not meaningful.

CANCEL
Cancellation of edit recovery. The backup data set is erased and the
corresponding entry in the EDIF recovery table is freed.

DEFER
Edit recovery is to be deferred. Recovery is cancelled, but the backup data set
is saved so that recovery can be processed at another time.

Return Codes
The following return codes are possible:

0 Normal completion.
v INIT - EDIF recovery table was successfully created.
v QUERY - Recovery is not pending.

4 Normal completion.
v INIT - EDIF recovery table already exists for current application.
v QUERY - Entry found in EDIF recovery table (recovery is pending).

20 Severe error; unable to continue.

EDIREC

54 z/OS V1R2.0 ISPF Services Guide



Example
This example invokes the EDIREC service to initialize the EDIF recovery table by
using the command procedure USRCMD.
CALL ISPLINK('EDIREC ','INIT ','USRCMD ');

EDIT – Edit a Data Set
The EDIT service provides an interface to the PDF editor and bypasses the display
of the Edit Entry Panel. The EDIT interface allows you to use a customized panel
for displaying data (use panel ISREFR01 as a model when creating your panel),
and lets you specify the initial macro and the edit profile to be used. You can use
EDIT to look at any ISPF library, concatenation of ISPF libraries, or data set that
can be allocated by using the LMINIT service. You can use the EDIT service
recursively, either through nesteddialogs or by entering an EDIT command while
editing. The EDIT service cannot be issued by a PL/I main program that also uses
subtasking. ISPF Edit and Edit Macros contains a complete description of the editor.

Note: The EDIT service might alter the DISPLAY environment. Do not expect the
DISPLAY environment that existed before invoking the EDIT service to
remain unchanged.

When EDIT is operating in recovery mode, an audit trail ofyour interactions is
automatically recorded in a PDF-controlled data set.Following a system failure, you
can use the audit trail to recover the data you were editing.

Note: Dialogs that invoke the EDIT service may invoke the EDREC service first to
start edit recovery, because the EDIT service does not do edit recovery.

A dialog using EDIT can place data into the ZEDUSER dialog variablein the shared
pool. The data in ZEDUSER is saved in the edit recovery table as an extension
variable when the recovery data set is initialized. This is done if RECOVERY is ON
when first entering Edit or after using the SAVE command. This data is then made
available in dialog variable ZEDUSER at the time edit recovery is processed.

ISPF Version 4 Release 2 enables you to more fully utilize your desktop
workstation’s potential by giving you the ability to edit host data on the
workstation, and workstation data on the host. ISPF calls this function distributed
editing.

You can use EDIT to work with workstation files on the host and host data sets on
the workstation. The ZWSWFN variable is the workstation working file name that
is generated by ISPF. The variable ZLRECL is the LRECL of the host data set being
edited. Both can be used in the workstation EDIT parameters field. ISPF interpets
any string that starts with an ampersand (&) as a system variable and evaluates it
before passing to the workstation command. Strings that do not start with an
ampersand are passed as is. The EDIT service edits the host data set or
workstation file on the workstation, using the workstation editor configured in the
ISPF Workstation Tool Integration Program. For more information about the
Integration program, refer to the ISPF User’s Guide

Note: There are a few restrictions you need to be aware of when using the
distributed edit function:
v This type of edit does not support uncataloged data sets.

EDIREC

Chapter 2. Description of ISPF Services 55



v Take care when uploading (to the host) files containing extended ASCII
characters. For example, uploading a Microsoft Word *.DOC file to the
host, using ISPF Edit to edit it, then saving it, can result in a corrupted
file.

v Some characters that are normally valid for a directory or file name might
not be supported when using distributed edit. For example, the caret
symbol (|, or shift-6 in GUI mode) is supported as a valid element of a
directory or file name on Windows and OS/2. However, it is ignored by
the TCP/IP File Transfer Protocols for both OS/2 and LAN Workplace for
DOS.

v Some workstation editors might not work for multiple modal invocations.
After the first invocation of some editors, any subsequent invocation of
the same editor passes control to the first invocation when a command is
issued in the second invocation, and the second invocation shuts down.
For example, because of the way the EPM editor works, the second
invocation passes control to the first and ends, returning a command
complete indication.

Besides the Edit program name, you can specify batch commands in the
Workstation Edit field. If you have a file transferred to the workstation that you
wish to do some work on besides Edit, you can do that in the beginning of the
batch file before invoking the editor. Depending on the parameters passed to the
batch command, you can also have conditional logics to perform other functions as
well.

Note: When designing your applications using the Edit service, be aware that you
cannot run the Edit service in a pop-up window.

Command Invocation Format
ISPEXEC EDIT DATASET(dsname) [VOLUME(serial)]

[PASSWORD(pswd-value)]

[PANEL(panel-name)]

[MACRO(macro-name)]

[PROFILE(profile-name)]

[FORMAT(format-name)]

[MIXED(YES|NO)]

[LOCK(YES|NO)]

[CONFIRM(YES|NO)]

[WS(YES|NO)]
[PRESERVE]

[PARM(parm-var)]

OR

ISPEXEC EDIT DATAID(dsname) [MEMBER(member-name)]

[PANEL(panel-name)]

[MACRO(macro-name)]

EDIT

56 z/OS V1R2.0 ISPF Services Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



[PROFILE(profile-name)]

[FORMAT(format-name)]

[MIXED(YES|NO)]

[LOCK(YES|NO)]

[CONFIRM(YES|NO)]

[WS(YES|NO)]
[PRESERVE]

[PARM(parm-var)]

OR

ISPEXEC EDIT WSFN(ws-filename) [ PANEL(panel-name)]

[MACRO(macro-name)]

[PROFILE(profile-name)]

[FORMAT(format-name)]

[MIXED(YES|NO)]

[LOCK(YES|NO)]

[CONFIRM(YES|NO)]

[WS(YES|NO)]
[PRESERVE]

[PARM(parm-var)]

Call Invocation Format
CALL ISPLINK ('EDIT ', {dsname} ,[serial]

,[pswd-value]

,[panel-name]

,[macro-name]

,[profile-name]

,{data-id}

,[member-name]

,[format-name]

,['YES '|'NO ']

,['YES '|'NO ']

,['YES '|'NO ']

,{ws-filename-buffer-name}

,['YES'|'NO']
,['PRESERVE']

,' '

EDIT

Chapter 2. Description of ISPF Services 57



,[parm-var] );

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
dsname

The data set name, in TSO syntax, of the data set to be edited. This is
equivalent to the “other” data set name on the Edit Entry Panel. You can
specify a fully qualified data set name enclosed in apostrophes (' '). If the
apostrophes are omitted, the TSO data set prefix from the user’s TSO profile is
automatically attached to the data set name. The maximum length of this
parameter is 56 characters.

For ISPF libraries and MVS partitioned data sets, you can specify a member
name or a pattern enclosed in parentheses. If you do not specify a member
name or if you specify a member pattern as part of the dsname specification
when the DATASET keyword is used, a member selection list for the ISPF
library, concatenation of libraries, or MVS partitioned data set is displayed. See
the ISPF User’s Guide for more information on patterns and pattern matching.

Note: You can also specify a VSAM data set name. If a VSAM data set is
specified, ISPF checks the ISPF configuration table to see if VSAM
support is enabled. If it is, the specified tool is invoked. If VSAM
support is not enabled, an error message is displayed.

serial
The serial number of the volume on which the data set resides. If you omit this
parameter or code it as blank, the system catalog is searched for the data set
name. The maximum length of this parameter is 6 characters.

pswd-value
The password if the data set has MVS password protection. Do not specify a
password for RACF- or PCF-protected data sets.

panel-name
The name of a customized edit panel, created by you, to be used when
displaying the data. Refer to ISPF Planning and Customizing for information
about developing a customized panel.

macro-name
The name of the first edit macro to be executed after the data is read, but
before it is displayed. Refer to ISPF Edit and Edit Macros for more information.

profile-name
The name of the edit profile to be used. If you do not specify a profile name,
the profile name defaults to the ISPF library type or last qualifier of the
“other” TSO data set name. See the ISPF User’s Guide for more information.

format-name
The name of the format to be used to reformat the data. The format-name
parameter is provided to support the IBM 5550 terminal using the Double-Byte
Character Set (DBCS).

YES|NO
For the MIXED parameter, if YES is specified, the EDIT service treats the data
as mixed-mode DBCS data. If NO (the default value) is specified, the data is

EDIT

58 z/OS V1R2.0 ISPF Services Guide



treated as EBCDIC (single-byte) data. This parameter is provided to support
the IBM 5550 terminal using the Double-Byte Character Set (DBCS).

YES|NO
The LOCK parameter is no longer used since the removel of LMF from the
ISPF product., but is left in for compatibility. If YES is specified the edit service
will fail with return code 12. If you want to be able to specify YES and have
the editor ignore the value, change the FAIL_ON_LMF_LOCK keyword value
in the ISPF Configuration Table to NO.

YES|NO
For the CONFIRM parameter, if you specify YES (the default) and then attempt
to CANCEL, MOVE, or REPLACE data while in EDIT mode, ISPF displays a
pop-up panel that requires you to confirm the action. Because members or data
sets that are moved, cancelled, or replaced are deleted, CONFIRM acts as a
safeguard against accidental data loss. If you want to terminate the edit session
without saving the data, press the ENTER key. If you made a mistake and
want to return to the edit session, enter the END command. If you specify NO
as the CONFIRM value, you will not be required to confirm a CANCEL,
MOVE, or REPLACE.

YES|NO
For the WS keyword, if you specify YES, the EDIT service edits the host data
set or workstation file on the workstation, using the workstation editor
configured in the ISPF Workstation Tool Integration Program. For more
information see the ISPF User’s Guide If you specify NO as the WS value, the
EDIT service edits the host data set or workstation file on the host using the
PDF editor.

data-id
The data ID that was returned from the LMINIT service. The maximum length
of this parameter is 8 characters.

You can use the LMINIT service in either of two ways before invoking the
EDIT service:
v You can use LMINIT to allocate existing data sets by specifying a data set

name or ISPF library qualifiers. LMINIT returns a data ID as output. This
data ID, rather than a data set name, is then passed as input to the EDIT
service.

v The dialog can allocate its own data sets by using the TSO ALLOCATE
command or MVS dynamic allocation, and then passing the ddname to
LMINIT. Again, a data ID is returned as output from LMINIT and
subsequently passed to the EDIT service. This procedure is called the ddname
interface to EDIT.It is particularly useful for editing VIO data sets, which
cannot be accessed by data set name because they are not cataloged.

member-name
A member of an ISPF library or MVS partitioned data set, or a pattern. If you
do not specify a member name when the MEMBER keyword or call invocation
is used, or if a pattern is specified, a member selection list for the ISPF library,
concatenation of libraries, or MVS partitioned data set is displayed. See the
ISPF User’s Guide for more information on patterns and pattern matching.

ws-filename-buffer-name
Specifies the name of a variable containing the path and the file name in the
workstation’s file system syntax of the workstation file to be edited. The
maximum length of the path and the workstation file name within this variable
is 256. If the path is omitted, the working directory configured in the ISPF Tool

EDIT

Chapter 2. Description of ISPF Services 59

|
|
|
|
|



Configurator will be inserted in front of the workstation file name to resolve
the relative path. For more information see the ISPF User’s Guide.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

PRESERVE
When specified, the editor stores the original length of each record in variable
length data sets and when a record is saved, the original record length is used
as the minimum length for the record. The editor always includes a blank at
the end of a line if the length of the record is zero or eight. Records can be
extended by adding nonblank data to the record or by using the
SAVE_LENGTH edit macro command. For more information, refer to theISPF
Edit and Edit Macros manual.

parm-var
The name of an ISPF variable that contains parameters which are to be passed
to the initial macro specified by macro-name. The variable value must not
exceed 200 bytes in length. If no macro name is specified, parm-var must be
blank or not specified.

Return Codes
The following return codes are possible:

0 Normal completion; data was saved.

4 Normal completion; data was not saved for one of the following reasons.
v No data changes were made during the EDIT session. The CANCEL

command was used to exit EDIT. Browse was substituted for EDIT
because insufficient storage was available to read in the requested data.

12 YES was specified for the LOCK parameter.

14 Member or sequential data set in use.

16 One of the following:
v No members matched the specified pattern.
v No members in the partitioned data set.

18 A VSAM data set was specified but the ISPF Configuration Table does not
allow VSAM processing.

20 Severe error; unable to continue.

Example 1
This example invokes the EDIT service for TELOUT, a member of the
ISPFPROJ.FTOUTPUT data set.

Command Invocation
ISPEXEC EDIT DATASET('ISPFPROJ.FTOUTPUT(TELOUT)') WS(YES)
OR

ISPEXEC LMINIT DATAID(EDT) DATASET('ISPFPROJ.FTOUTPUT')
ISPEXEC EDIT DATAID(&EDT) MEMBER(TELOUT) WS(YES)

EDIT

60 z/OS V1R2.0 ISPF Services Guide

|
|
|
|
|

||

||
|



Call Invocation
CALL ISPLINK ('EDIT','ISPFPROJ.FTOUTPUT(TELOUT)',' ',' ',' ',' ',' ',' ',

' ',' ',' ',' ',' ',' ','YES');
OR

Set the program variable BUFFER to contain:
BUFFER = 'EDIT DATASET('ISPFPROJ.FTOUTPUT(TELOUT)'') WS(YES)';

Set the program variable BUFFLN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFFLN, BUFFER);

Example 2
This example invokes the EDIT service for a workstation file, c:\config.sys, using
the PDF editor on the host.

Command Invocation
Set the command variable WSFNNAME to contain:
WSFNNAME='c:\config.sys'
ISPEXEC EDIT WSFN(WSFNNAME) WS(NO)

Call Invocation
Set the program variable to contain:
WSFNNAME='c:\config.sys';
CALL ISPLINK('EDIT',' ',' ',' ',' ',' ',' ',

' ',' ',' ',' ',' ',' ',' WFSNNAME','NO');

OR

Set the program variable WSFNNAME to contain:
WSFNNAME='c:\config.sys';

Set the program variable BUFFER to contain:
BUFFER='EDIT WSFN(WSFNNAME) WS(NO)';

Set the program variable BUFFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC(BUFFLEN,BUFFER);

EDREC – Specify Edit Recovery Handling
The EDREC service initializes an edit recovery table, determines whether recovery
is pending, and takes the action specified by the first argument.

Note: Dialogs that invoke the EDIT service should invoke the EDREC service first
to start edit recovery, because the EDIT service does not perform edit
recovery.

When you invoke the EDREC service, EDREC displays a special panel. Using this
panel you can recover data, cancel recovery, defer recovery until a later time, or
enter the END command to return to the next sequential command in your
command invocation or to return to the next sequential instruction in your
program.

EDIT

Chapter 2. Description of ISPF Services 61



The EDREC service attempts to use the panel that you specified in the EDIT
service from which it is recovering. Make sure that this panel is available to the
EDREC service. It must be in a library allocated to ISPPLIB or available through a
LIBDEF.

Note: You can use the ZEDUSER variable to save LIBDEF information or the panel
name when you invoke EDIT. This is different from edit recovery entered
from option 2, because option 2 always uses its default panel.

Command Invocation Format
ISPEXEC EDREC {INIT [CMD(command-name)]}

{QUERY }

{PROCESS [PASSWORD(pswd-value)]

[DATAID(data-id)]}

{CANCEL }

{DEFER }

Call Invocation Format
CALL ISPLINK ('EDREC ' {,'INIT ' [,command-name]}

{,'QUERY '}

{,'PROCESS ' [,pswd-value] [,data-id]}

{,'CANCEL '}

{,'DEFER '});

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
INIT

Initializes an edit recovery table in your profile library if one does not already
exist for the current application. The edit recovery table is saved in the data set
allocated to ddname ISPPROF in member xxxxEDRT, where xxxx is the ISPF
application ID.

command-name
A CLIST or REXX exec that starts the table. If you omit this parameter, the
INIT option invokes an PDF-supplied CLIST (ISREDRTI) that creates an
eight-row edit recovery table, permitting eight levels of concurrent Edit
sessions with recovery active. The Edit sessions can result from recursion or
split-screen usage.

If you specify a command with the INIT option, the command should be
patterned after ISREDRTI. It can create a different number of rows or use a
different naming convention for the backup data sets, or specify “keep” instead
of “delete” as the backup data set disposition. The format of the edit recovery
table must be the same as that specified in ISREDRTI.

QUERY
Causes EDREC to search the edit recovery table for a pending recovery. When

EDREC

62 z/OS V1R2.0 ISPF Services Guide



the QUERY option is specified, EDREC scans the edit recovery table for an
entry containing a recovery pending condition. If the return code is 4,
indicating an entry was found, the dialog must call EDREC with the PROCESS,
CANCEL, or DEFER option.

EDREC QUERY is usually used in a loop, since there can be more than one
pending recovery. Multiple recoveries can result from recursion or from
split-screen usage of the dialog. Each subsequent call to EDREC with the
QUERY option scans the table starting at the entry after the last one that was
found. A typical loop, written in pseudo-code (showing the parameters
themselves instead of sample values), is as follows:
SET DONE = NO
DO WHILE &DONE = NO

ISPEXEC EDREC QUERY
IF &LASTCC = 4 THEN -

ISPEXEC EDREC PROCESS
ELSE -

SET DONE = YES
END

As the preceding example shows, EDREC QUERY must be used before each
invocation of any of the following EDREC functions: PROCESS, CANCEL, or
DEFER.

The following variables are stored in the dialog function pool when EDREC is
called with the QUERY option and the return code is 4, indicating that
recovery is pending.

ZEDBDSN
Backup data set name.

ZEDTDSN
Target data set name.

ZEDTMEM
Target member name, if applicable.

ZEDTVOL
Volume serial of target data set, if a volume serial was specified on
invocation of the EDIT service.

ZEDROW
Row number of entry in edit recovery table.

The dialog can check the preceding variables and use them to display
information to the user. If EDREC QUERY shows that recovery is not pending,
the above variables are not meaningful.

ZEDUSER is an extension variable in the Edit Recovery Table that isprovided
to contain user data. Whatever data is in dialog variable ZEDUSER in the
shared pool is saved to the ZEDUSER variable in the edit recovery table when
the recovery data set is initialized. This is done if RECOVERY is ON when
entering Edit or after using the SAVE command.

When EDREC is called with the QUERY option and the return code is 4,
indicating that recovery is pending, or if ISPF option 2 edit recovery takes
place, the data is read out of ZEDUSER in the table and returned to ZEDUSER
in the shared and function pools. If recovery is not pending, this variable is not
meaningful. The extension variable ZEDMODE indicates whether this is an
edit session or a view session that is to be recovered.

EDREC

Chapter 2. Description of ISPF Services 63



PROCESS
Causes edit recovery to proceed.

pswd-value
The MVS password of the target data set. This parameter is valid only with the
PROCESS option.

data-id
The data ID of the data set that will contain the recovered data. The recovered
data should be saved in a data set other than the data set that was being
edited when the system failure occurred. If you omit this parameter, EDREC
attempts to save the recovered data in the original data set.

Before using the data ID parameter, the dialog must first invoke the LMINIT
service to specify the target data set and then pass the data ID to the EDREC
service. This procedure can also control the allocation of the target data set for
recovery, even if it is not the original data set being edited. You must use this
procedure if you originally specified the data set being edited to the EDIT
service using the ddname interface.

CANCEL
Cancels edit recovery. The backup data set is erased and the corresponding
entry in the edit recovery table is freed.

DEFER
Defers edit recovery. Recovery is canceled, but the backup data set is saved so
that recovery can be processed in another Edit session.

Attention:

Use this parameter carefully. It can cause your original data set to be written
over in the next Edit session.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal return.
INIT Edit recovery table was successfully created.
QUERY

Recovery is not pending.
PROCESS

Recovery was completed and the data was saved.

4 Normal return.
INIT Edit recovery table already exists for current application.
QUERY

Entry found in edit recovery table; recovery is pending.
PROCESS

Recovery was completed, but user did not save data.

20 Severe error; unable to continue.

EDREC

64 z/OS V1R2.0 ISPF Services Guide



Example
This example invokes the EDREC service for INIT to create an edit recovery table
if one does not exist.

Command Invocation
ISPEXEC EDREC INIT

Call Invocation
CALL ISPLINK ('EDREC ', 'INIT ');
OR

Set the program variable BUFFER to contain:
BUFFER = 'EDREC INIT';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

FILESTAT – Statistics for a file
Use the FILESTAT service to determine statistics about a file on the connected
workstation. FILESTAT returns information that the file exists, the longest length
record in the file, and the date and time on the file.

Note: Be aware that when the FILESTAT service is issued for certain reserved or
restricted operating system file names, your workstation operating system or
host system can cease to function, or ″hang″. See your workstation operating
system documentation to note reserved or restricted file names.

Command Invocation Format
ISPEXEC FILESTAT FILE(var-name)

[LRECL(var-name),DATE(var-name)]

Call Invocation Format
CALL ISPLINK ('FILESTAT',var-name

,[var-name,var-name])

Parameters
FILE var-name

The variable name containing the workstation file for which you want
statistics. If no parameters other than the file name are specified, the function
will verify that the file exists with a return code of 0.

LRECL var-name
The variable name in which ISPF returns the longest record length of the file
you specify. The variable is returned in character format and has a length of 8.

DATE var-name
The variable name in which ISPF returns the date and time that the specified
workstation file was last changed. The date and time are returned in character
format, and have a length of 19. The date format is ’yyyy/mm/dd hh:mm:ss’.

Return Codes
The following return codes are possible:

EDREC

Chapter 2. Description of ISPF Services 65



0 Workstation file exists.

4 Workstation file does not exist.

8 Error in variable specification.

10 No workstation connection exists.

12 Workstation device is not ready.

20 Severe error in FILESTAT service.

Example
This exec verifies the existence of LANGSEL.DES in the D:\DESIGN directory on
the workstation. The lrecl of the workstation file is saved in variable LVAR and the
date is save in variable DVAR.
/* REXX */
fivar = 'd:\design\langsel.des'
address ispexec 'filestat file(fivar) lrecl(lvar) date(dvar)'

FILEXFER – Upload or Download File
The FILEXFER service is used to upload files from the workstation or download
files to the workstation.

Note: Be aware that when the FILEXFER service is issued for certain reserved or
restricted operating system file names, your workstation operating system or
host system can cease to function, or ″hang″. See your workstation operating
system documentation to note reserved or restricted file names.

You use the HOST(var-name) and WS(var-name) keywords to specify the host data
set name (and member if it is a PDS) and the workstation file name involved in
the file transfer. For each, a variable is specified that contains the host or
workstation identifier. The TO(HOST|WS) keyword determines the direction of the
file transfer. TO(HOST) specifies that the file named in the WS(var-name) keyword
should be uploaded to the data set (and member) named in the HOST(var-name)
keyword. TO(WS) specifies that the data set (and member) named in the
HOST(var-name) keyword should be downloaded to the file named in the
WS(var-name) keyword.

The host data set specification should follow normal TSO naming conventions. If
the host data set you specify is unquoted, the user’s prefix is used as the high-level
qualifier of the data set.

The workstation file name must include the drive and directory information. The
host data set name should include a member name when applicable. ISPF variables
are used for the file names. Use the ISPF VPUT service to put the variables in the
variable pool before starting this command.

Command Invocation Format
ISPEXEC FILEXFER HOST(var-name) WS(var-name) TO(HOST|WS)

[VOLUME(volume)]
[BINARY|TEXT]
[STATS|NOSTATS]
[CHKDATE (YES|NO)]
[SETDATE (YES|SCLM|NO)]
[MAKEPATH (YES|NO)]

FILESTAT

66 z/OS V1R2.0 ISPF Services Guide



Call Invocation Format
CALL ISPEXEC (buf-len, buffer);
OR

CALL ISPLINK ('FILEXFER',host_var,ws_var,'HOST '|'WS ',
[volume,
'BINARY '|'TEXT ',
'STATS '|'NOSTATS ',
'YES '|'NO ',
'YES '|'SCLM '|'NO '

'YES '|'NO '])

Parameters
HOST var-name

An ISPF variable that contains the name of the host file that is to be transfered.

WS var-name
An ISPF variable that contains the name of the workstation file that is to be
transfered.

TO (host or ws)
An ISPF variable that tells where the file will be created upon the completion
of the transfer.
v if TO HOST is specified:

– in binary mode—data sets with fixed length records are padded with null
characters if needed to fill the final record of the data set. Data sets with
variable length records are not padded.

– in text mode—for OS/2 and Windows systems, a Carriage-Return,
Line-Feed combination is considered the end of a line. An end-of-file
character that is the last character in the file is not transmitted to the host.
End-of-file characters at other locations in the file are transmitted to the
host along with the data following the end-of-file character.
For AIX and HP-UX, a Line-Feed character is considered the end of a line.
If a line is longer than the record length of the data set the line is split
into as many records as are needed to hold the line.
For data sets with fixed length records lines are padded with blanks to
reach the record length.

v if TO WS is specified:
– in binary mode—all data from each record in the host data set is

concatenated to form the workstation file.
– in text mode—blanks after the last non-blank character are trimmed form

each record. Records consisting entirely of blanks are sent as a line with a
single blank character. Zero-length records from a data set with variable
length records are not transferred to the workstation, and can cause an
error condition to occur.

If a data set containing end-of-line characters is transferred to the workstation
and back to the host, the end-of-line characters are removed and the line is
split at the location of the end-of-line characters. For OS/2 and Windows
systems, an end-of-file character at the end of the data set is also removed
when the data set is transferred to the workstation and back to the host.

FILEXFER

Chapter 2. Description of ISPF Services 67



volume
An ISPF volume number for the location of the ’TO’ file. Used only when
working with uncataloged data sets.

BINARY
Specifies that no ASCII/EBCDIC character translation should take place.

TEXT
Specifies that ASCII/EBCDIC translation should take place.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

STATS
Specifies that ISPF statistics will be generated or maintained by incrementing
the mod level and setting the last changed time to the time when the member
is uploaded. This is the default.

NOSTATS
Specifies that ISPF statistics will not be generated or maintained when the
member is uploaded.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

CHKDATE
YES On download, check the date and time of the source file and the target

file. If they are different, perform the file transfer and update the date
and time of the target file to match those of the source file. If they are
the same, do not perform the file transfer, and set the return code to 2.

If the source file you are downloading from the host to the PC does
not have an entry in the date and time statistics, the current date is set
on the host file at the time of the file transfer.

NO Transfer the files regardless of dates and times.

SETDATE
YES On upload, set the date and time of the host file to be the same as the

workstation file.
SCLM On upload, set the date and time of the host file to be the same as the

workstation file. In addition to this, set the SCLM bit on.
NO On upload, use the system data and time for the host files.

MAKEPATH
YES On transfer to the workstation, create the necessary subdirectories to

store the file transferred. This parameter is ignored on a transfer to the
host.

NO On transfer to the workstation, do not create any subdirectories to
store the file transferred. This parameter is ignored on a transfer to the
host. NO is the default for this parameter.

Return Codes
The following return codes are possible:

2 Source file and target file have the same date and time.

4 LMSTAT failed.

6 Data set not cataloged.

FILEXFER

68 z/OS V1R2.0 ISPF Services Guide



7 Error in variable specification.

8 ″TO″ direction not valid.

9 Host name is too long.

10 No workstation connection exists.

11 Return code 1 from DTTRANSFER. Host data set had null object handle.

12 Return code 2 from DTTRANSFER. Workstation file had null object handle.

13 Return code 3 from DTTRANSFER. Host data set could not be opened.

14 Return code 4 from DTTRANSFER. Workstation file could not be opened.

15 Return code 5 from DTTRANSFER. Error reading host data set.

16 Return code 6 from DTTRANSFER. Error reading workstation file.

17 Return code 7 from DTTRANSFER. Error writing host data set.

18 Return code 8 from DTTRANSFER. Error writing workstation file.

19 Return code 9 from DTTRANSFER. Error closing host data set.

20 Severe error in transfer service.

21 Return code 10 from DTTRANSFER. Error closing workstation file.

22 Return code 11 from DTTRANSFER. User refused file access.

23 Data set or member in use.

Example
The following exec demonstrates a file transfer from the host to the workstation.
/* REXX */
VAR1 = 'MYMVS.FILE(STUFF)'
VAR2 = 'E:\MYOS2.FILE'
ADDRESS ISPEXEC 'VPUT (VAR1 VAR2)'
ADDRESS ISPEXEC 'FILEXFER HOST(VAR1) WS(VAR2) TO(WS) TEXT'

FTCLOSE – End File Tailoring
The FTCLOSE service is used to terminate the file tailoring process and to indicate
the final disposition of the file tailoring output.

A member-name parameter should be specified if the output is a library. The file
tailoring output is given the specified member name. No error condition results if
the member-name parameter is not specified and the output is not stored in the
library.

If the member-name parameter is specified and the output is sequential, a severe
error results.

The library parameter should be specified if a library other than that represented
by the ISPFILE or LIBDEF definition is to be used. The library parameter is
ignored if the “TEMP” option (temporary file) is specified on the FTOPEN service
or if the ISPFILE definition specifies a sequential data set. A severe error occurs if
file tailoring attempts to use a data set that is not a library.

The NOREPL parameter specifies that an existing member in the file tailoring
output library is not to be overlaid by the current FTCLOSE service. If a member

FILEXFER

Chapter 2. Description of ISPF Services 69



of the same name already exists, the FTCLOSE service request is terminated with a
return code of 4 and the original member remains unaltered.

Command Invocation Format
ISPEXEC FTCLOSE [NAME(member-name)]

[LIBRARY(library)]

[NOREPL]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);
OR

CALL ISPLINK ('FTCLOSE ' [,member-name]

[,library]

[,'NOREPL ']);

Parameters
member-name

Specifies the name of the member in the output library that is to contain the
file tailoring output.

library
Specifies the name of a DD statement or lib-type on the LIBDEF service request
that defines the output library in which the member-name exists. If specified, a
generic (non-ISPF) DD name must be used. If this parameter is omitted, the
default is ISPFILE.

NOREPL
Specifies that FTCLOSE is not to overlay an existing member in the output
library.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

4 Member already exists in the output library and NOREPL was specified.
The original member is unchanged.

8 File not open. FTOPEN was not used prior to FTCLOSE.

12 Output file in use. ENQ failed.

16 Skeleton library or output file not allocated.

20 Severe error.

FTCLOSE

70 z/OS V1R2.0 ISPF Services Guide



Example
End the file tailoring process and store the result of the processing in the file
tailoring output library in member TELOUT.
ISPEXEC FTCLOSE NAME(TELOUT)

Set the program variable BUFFER to contain:
FTCLOSE NAME(TELOUT)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('FTCLOSE ','TELOUT ');

FTERASE – Erase File Tailoring Output
The FTERASE service erases a member of a file tailoring output library.

A severe error occurs if a specified library or the default, ISPFILE, is a sequential
file.

Command Invocation Format
ISPEXEC FTERASE member-name [LIBRARY(library)]

Call Invocation Format

CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('FTERASE ', member-name [,library]);

Parameters
member-name

Specifies the name of the member that is to be deleted from the output library.

library
Specifies the name of a DD statement or lib-type on the LIBDEF service request
that defines the output library that holds the member to be deleted. ISPFILE is
the default if this parameter is omitted.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

FTCLOSE

Chapter 2. Description of ISPF Services 71



0 Normal completion.

8 File does not exist.

12 Output file in use; ENQ failed.

16 Alternate output library not allocated.

20 Severe error.

Example
Erase member TELOUT in the file tailoring output library.
ISPEXEC FTERASE TELOUT

Set the program variable BUFFER to contain:
FTERASE TELOUT

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('FTERASE ','TELOUT ');

FTINCL – Include a Skeleton
The FTINCL service specifies the skeleton that is to be used to produce the file
tailoring output. If an FTOPEN service has not already been issued, the FTINCL
service performs the equivalent of an FTOPEN, without the TEMP keyword, before
processing the specified skeleton.

Command Invocation Format
ISPEXEC FTINCL skel-name [NOFT]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);
OR

CALL ISPLINK ('FTINCL ', skel-name [,'NOFT '] );

Parameters
skel-name

Specifies the name of the skeleton.

NOFT
Specifies that no file tailoring is to be performed on the skeleton: the entire
skeleton is to be copied to the output file exactly as is with no variable
substitution or interpretation of control records.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

FTERASE

72 z/OS V1R2.0 ISPF Services Guide



buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Skeleton does not exist.

12 Skeleton in use; ENQ failed.

16 Data truncation occurred or skeleton library or output file not allocated.

20 Severe error.

Example
Perform file tailoring using the file tailoring skeleton named TELSKEL, a member
in the file tailoring skeleton library, to control processing.
ISPEXEC FTINCL TELSKEL

or Set the program variable BUFFER to contain:
FTINCL TELSKEL

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('FTINCL ','TELSKEL ');

FTOPEN – Begin File Tailoring
The FTOPEN service, which begins the file tailoring process, allows skeleton files
to be accessed from the skeleton library specified by ddname ISPSLIB. The skeleton
library must be allocated prior to invoking ISPF. ISPSLIB can specify a
concatenation of files.

If output from file tailoring is not to be placed in a temporary file, the desired
output file must be allocated to the ddname ISPFILE prior to invoking this service.
ISPFILE can designate either a library or a sequential file. The skeleton files can
contain variable-length records, with a maximum record length of 255.

The same rules apply for DBCS-related variable substitution in file tailoring as
those described for file skeleton definition.

Command Invocation Format
ISPEXEC FTOPEN [TEMP]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);
OR

CALL ISPLINK ('FTOPEN ' [,'TEMP '] );

FTINCL

Chapter 2. Description of ISPF Services 73



Parameters
TEMP

Specifies that the output of the file tailoring process should be placed in a
temporary sequential file. Output is fixed-length 80-byte records. The file is
automatically allocated by ISPF.Its name is available in system variable
ZTEMPF.

If this parameter is omitted, the output is placed in the library or sequential
file designated by ddname ISPFILE.

ZTEMPF contains a fully qualified data set name. ZTEMPN contains the
ddname. Generated JCL in this file can be substituted for background
execution by using the following TSO command:
SUBMIT '&ZTEMPF'

Prior to issuing the SUBMIT command, the VGET service should be invoked to
initialize the variable ZTEMPF, and the FTCLOSE service must be invoked to
ensure that all of the file tailoring output is included.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 File tailoring already in progress.

16 Skeleton library or output file not allocated.

12 Output file in use; ENQ failed.

20 Severe error.

Example
Prepare for access (open) both the file tailoring skeleton and file tailoring output
libraries.
ISPEXEC FTOPEN

Set the program variable BUFFER to contain:
FTOPEN

or Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('FTOPEN ');

FTOPEN

74 z/OS V1R2.0 ISPF Services Guide



GETMSG – Get a Message
The GETMSG service obtains a message and related information from the message
file. The short and long message text, help panel name, and alarm indicator can be
obtained for a specified message-id. Values for all variables defined in the message
are substituted when the message text is retrieved. If the desired message
information is not present for the short message text, long message text, or help
panel name, the corresponding variable name specified in the GETMSG service
request is set to a null value. If the alarm indicator is not present on the message, a
value of “NO” is returned in the alarm-name variable.

A message type of critical (.TYPE=CRITICAL) on the message definition statement
overrides the values specified for the alarm and window keywords. For critical
messages, the dialog manager sounds the alarm and places the message in a
message pop-up window that requires a response. If GETMSG asks for the
.ALARM value to be returned, the value returned will be YES, reflecting the fact
that .TYPE=CRITICAL has forced that value. This is the case if .ALARM was not
specified (which would normally default to NO) or if .ALARM=NO is actually
defined for the message.

All the parameters except the message-id are optional. If the optional parameters
are omitted, GETMSG simply validates the existence of the specified message.

Command Invocation Format
ISPEXEC GETMSG MSG(message-id) [SHORTMSG(short-message-name)]

[LONGMSG(long-message-name)]

[ALARM(alarm-name)]

[HELP(help-name)]

[TYPE(type-name)]

[WINDOW(window-name)]

[CCSID(ccsid-name)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);
OR

CALL ISPLINK ('GETMSG ' ,message-id [,short-message-name]

[,long-message-name]

[,alarm-name]

[,help-name]

[,type-name]

[,window-name]

[,ccsid-name]);

GETMSG

Chapter 2. Description of ISPF Services 75



Parameters
message-id

Specifies the identification of the message for which information is to be
retrieved.

short-message-name
Specifies the name of a variable into which the short message text, if any, is to
be stored.

long-message-name
Specifies the name of a variable into which the long message text is to be
stored.

alarm-name
Specifies the name of a variable into which the alarm indicator of “NO” or
“YES” is to be stored.

help-name
Specifies the name of a variable into which the help panel name, if any, is to be
stored.

type-name
Specifies the name of the variable into which the message type, if any, (notify,
warning or critical) is to be stored.

window-type
Specifies the name of the variable into which the window type, if any (RESP or
NORESP), is to be stored.

ccsid-name
Specifies the name of the variable into which the CCSID, if any, is to be stored.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

12 The specified message could not be found.

20 Severe error.

Example
For the message named ABCS102, return the text of the long message in variable
ERRMSG and the help panel name in variable HPANEL.
ISPEXEC GETMSG MSG(ABCS102) LONGMSG(ERRMSG) HELP(HPANEL)

or Set the program variable BUFFER to contain:
GETMSG MSG(ABCS102) LONGMSG(ERRMSG) HELP(HPANEL)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

GETMSG

76 z/OS V1R2.0 ISPF Services Guide



or alternately
CALL ISPLINK ('GETMSG ','ABCS102 ',' ','ERRMSG ',

' ','HPANEL ');

GRERROR – Graphics Error Block Service
This service is used only with CALL ISPLINK or CALL ISPLNK calls.

The GRERROR service returns to the caller the address of the GDDM error record
and the address of the GDDM call format descriptor module.

This service allows the dialog developer to examine the error record provided by
GDDM from GDDM function calls. Since the dialog uses the same application
anchor block (AAB) as ISPF and cannot use the FSEXIT function, this information
would otherwise be unavailable. See the GDDM Programming Reference for
information about the GDDM error record and the call format descriptor module.

Command Invocation Format
ISPEXEC *This service does not apply to

command or APL2 procedures*

Call Invocation Format
CALL ISPEXEC *This service cannot be used

with this interface*
OR

CALL ISPLINK ('GRERROR ', error-record-pointer,
call-format-descriptor-module-pointer);

Parameters
error-record-pointer

Specifies a 4-byte program variable where the address of the GDDM error
record is returned.

call-format-descriptor-module-pointer
Specifies a 4-byte program variable where the address of the GDDM call
format descriptor module is returned.

Return Codes
The following return codes are possible:

0 Normal completion

8 ISPF/GDDM interface is not established

20 Severe error.

GRINIT – Graphics Initialization
This service is available only with CALL ISPLINK or CALL ISPLNK calls.

The GRINIT service initializes the ISPF/GDDM interface and optionally requests
that ISPF define a panel’s GRAPHIC area as a GDDM graphics field. This service
also replaces the FSINIT or SPINIT GDDM calls.

GETMSG

Chapter 2. Description of ISPF Services 77



Graphic areas are not supported in GUI mode. However, you have some options if
you request that an ISPF/GDDM interface be initialized:
v If you specify a panel name in your GRINIT request, which indicates that you

intend to define a graphic area in the panel, you can choose one of the following
options:
1. To display the panel with the graphic area in the host emulator session

Note: If you are in split screen mode, the graphic area panel cannot be
displayed on the host.

2. To display the panel without the graphic area on your workstation.
v If you issue a GRINIT request without specifying a panel name, you can choose

from the following options:
1. To continue running you application until a graphic panel is encountered, at

which time you can choose one of the options provided for GRINIT calls that
do specify a panel name

2. To terminate the GDDM initialization, which returns a code of 20.

If you have specified GUISCRD or GUISCRW values on the ISPSTART invocation
that are different than the actual host screen size, GDDM cannot be initialized and
the GRINIT service will end with a return code of 20.

GDDM or PGF functions are accessed by the dialog through the GDDM reentrant
or system programmer interfaces. These interfaces are described in Graphical Data
Display Manager Base Application Programming Reference.

The dialog must provide an 8-byte area, called an application anchor block (AAB),
which is on a fullword boundary, to the GRINIT call. This AAB identifies the
ISPF/GDDM instance and must be used in all GDDM calls made by the dialog.
Within the ISPF/GDDM instance, the dialog cannot perform any of the following
GDDM calls:
ASREAD FSSHOR ISFLD MSPCRT MSQMOD PTNSEL WSCRT
FSSHOW ISQFLD MSPQRY MSQPOS PTSCRT WSDEL WSIO
FSENAB FSTERM ISXCTL MSPUT MSREAD PTSDEL WSMOD
FSEXIT GSREAD MSCPOS MSQADS PTNCRT PTSSEL WSSEL
FSINIT ISCTL MSDFLD MSQGRP PTNDEL PTSSPP WSSWP
FSRNIT ISESCA MSGET MSQMAP PTNMOD SPINIT

In addition, the following GDDM calls, while permitted, can interfere with the
ISPF/GDDM session:
DSCLS DSDROP DSOPEN DSRNIT DSUSE DSCMF

If a dialog uses GDDM calls to put alphanumeric fields on a display, these fields
are displayed only if there are no fields in the body of the ISPF panel definition.
Other fields are not displayed. This means that alphanumeric fields can be
displayed by either ISPF or the dialog through the use of GDDM, but not by both.

In addition, when using GDDM to put alphanumeric fields on a display, it is the
dialog’s responsibility to ensure that split-screen mode is not active prior to the
display of the panel and that split-screen mode is disabled during the display of
the panel.

Note:

GRINIT

78 z/OS V1R2.0 ISPF Services Guide



Terminals running in partition mode or terminals running with multiple screen
widths, including the 3290 and the 3278 Mod 5, are not supported for graphics
interface mode.

TSO Session Manager is disabled while graphics interface mode is active.

Command Invocation Format
ISPEXEC *This service does not apply to

command or APL2 procedures*

Call Invocation Format
CALL ISPEXEC *This service cannot be used

with this interface*
OR

CALL ISPLINK ('GRINIT ' ,application-anchor-block
[,panel-name]);

Parameters
application-anchor-block

Specifies the name of a variable containing an 8-byte application anchor block.
This storage area can be updated by ISPF.

panel-name
Specifies the name of the panel containing the GRAPHIC area.

Return Codes
The following return codes are possible:

0 Normal completion.

8 The specified panel does not contain a GRAPHIC area.

12 The specified panel could not be found.

20 Severe error.

Example
Initialize the ISPF/GDDM interface and request that the graphic area in panel
OURLOGO be defined as a GDDM graphics field.
CALL ISPLINK ('GRINIT ',ABC,'OURLOGO ');

GRTERM – Graphics Termination Service
This service is available only with CALL ISPLINK or CALL ISPLNK calls.

The GRTERM service indicates that the caller has completed all GDDM processing
and that GDDM can now be terminated.

If the user is running in split-screen mode and the other task has requested
GDDM, GDDM will still be used for displays.

GRINIT

Chapter 2. Description of ISPF Services 79



Command Invocation Format
ISPEXEC *This service does not apply to

command or APL2 procedures*

Call Invocation Format
CALL ISPEXEC *This service cannot be used

with this interface*
OR

CALL ISPLINK ('GRTERM ');

Return Codes
The following return codes are possible:

0 Normal completion

20 Severe error.

LIBDEF – Allocate Application Libraries
The LIBDEF service provides for the dynamic definition of application data sets,
thus allowing application data sets to be specified during an ISPF session. This
eliminates the need for allocate statements to define all application data sets prior
to invoking an ISPF session.

The LIBDEF service can be used to define application:
v Panels
v Messages
v Tables
v Skeletons
v File tailoring output
v User link libraries
v Images.

The same ddnames used to define ISPF libraries are used for defining data sets on
the LIBDEF service requests. An application-level definition for ISPPROF, the ISPF
profile library, is not permitted, because ISPPROF contains user-related data.

The image library with the associated ddname ISPILIB is not a required ISPF
library. If you plan to use ISPF’s image support in GUI mode, you must allocate
the image input data set to ddname ISPILIB before using images or before
invoking the LIBDEF service with libtype ISPILIB.

The LIBDEF service provides four ways to define application-level datasets:
1. Using the DATASET Keyword

The LIBDEF service request can be issued with the DATASET keyword,
together with a list of data set names that contain the application’s dialog
elements. For table and file tailoring output libraries, only one data set can be
specified. For other libraries, a maximum of 15 names can be supplied in the
data set list. All the data sets defined by LIBDEF must be cataloged.
If application PAYROLL uses panels PAYINIT and PAYTERM (members of the
library ’ISPFPROJ.ABC.PANELS’), the LIBDEF service request to identify the
panels to ISPF can be:
ISPEXEC LIBDEF ISPPLIB DATASET ID('ISPFPROJ.ABC.PANELS')

GRTERM

80 z/OS V1R2.0 ISPF Services Guide



The DISPLAY service would then be issued as:
ISPEXEC DISPLAY PANEL(PAYINIT)

Allocate statements need not be specified before ISPF is invoked for the data
sets defined by the LIBDEF service with the DATASET keyword.

2. Using the EXCLDATA Keyword
The LIBDEF service request can be issued with the EXCLDATA keyword,
together with a list of user link library data set names. The EXCLDATA
keyword can be used only with cataloged user link libraries.
For example, if application PAYROLL uses two programs, PAYINIT and
PAYTERM, which are members of the partitioned data set
ISPFPROJ.ABC.PROGRAMS, the LIBDEF service request for identifying the
programs to ISPF can be issued as:
ISPEXEC LIBDEF ISPLLIB EXCLDATA ID('ISPFPROJ.ABC.PROGRAMS')

See “User Link Libraries” for a discussion on the effect of the EXCLDATA
specification on member searches.

Allocate statements need not be specified before ISPF is invoked for the data
set defined by the LIBDEF service with the EXCLDATA keyword.

3. Using the LIBRARY Keyword
The LIBRARY keyword on a LIBDEF service request associates an allocated
ddname with an ISPF data element type. For example, if application PAYROLL
uses panels PAYINIT and PAYTERM, a LIBDEF service request used to identify
the panels to ISPF is:
ISPEXEC LIBDEF ISPPLIB LIBRARY ID(PAYDD)

Prior to issuing this LIBDEF service request, you must issue:
ALLOCATE FI(PAYDD) DA('ISPFPROJ.ABC.PANELS') SHR

The DISPLAY service would then be issued as:
ISPEXEC DISPLAY PANEL (PAYINIT)

4. Using the EXCLLIBR Keyword
The EXCLLIBR keyword on a LIBDEF service request associates an allocated
user link library ddname with the ISPF link library dialog element type. For
example, if application PAYROLL uses programs PAYINIT and PAYTERM, a
LIBDEF service request for identifying the programs to ISPF is:
ISPEXEC LIBDEF ISPLLIB EXCLLIBR ID(PAYDD)

Prior to issuing this LIBDEF service request, you must issue:
ALLOCATE FI(PAYDD) DA('ISPFPROJ.ABC.PROGRAMS') SHR

See the “User Link Libraries” section below for a discussion on the effect of the
EXCLLIBR specification on member searches.

The DATASET (or EXCLDATA) and LIBRARY (or EXCLLIBR) keywords are
mutually exclusive.

An application invoked from ISPF issues LIBDEF requests to define the
application-level libraries that will be in effect while the application is running.
This feature might improve the search time for libraries that are defined at the
application level, but it adds an extra search level for entities that exist in the ISPF
product library definitions.

LIBDEF

Chapter 2. Description of ISPF Services 81



The currently allocated ISPF libraries must still be defined before invoking ISPF
and cannot be changed while in an ISPF session. If no application-level libraries
have been defined, the current set of allocated ISPF libraries is searched. If an
application-level library is defined, it is searched before the allocated ISPF libraries.
Within a given application, when a LIBDEF has been defined with either the
DATASET (or EXCLDATA) or LIBRARY (or EXCLLIBR) keyword, and another
LIBDEF request is issued with either keyword for the same lib-type, the second
definition takes precedence over the first. If the user specifies the COND keyword
on the service call, the application-level library is defined only if there is no
application-level library already defined for the specified type (for example,
messages or panels).

The absence of the DATASET (or EXCLDATA) or LIBRARY (or EXCLLIBR)
keyword, or the presence of either keyword with a null data set list, indicates that
an application-level definition for the specified type is removed, if one exists.

The LIBDEF service also allows users to define a generic library type. The generic
library extends the use of the LIBRARY parameter on DM component services such
as TBCLOSE, TBOPEN, or TBSAVE, by allowing the user to specify the name of a
LIBDEF generic library.

When the DATASET keyword is specified with the LIBDEF service, it causes the
newly defined application-level library to be searched before the allocated ISPF
library for a particular type. To allow the user to continue to define user-level
libraries that are to be searched first, the following new ddnames must be specified
in ALLOCATE commands before ISPF is invoked:
ISPMUSR User message library
ISPPUSR User panel library
ISPSUSR User skeleton library
ISPTUSR User table library
ISPTABU User table output library
ISPFILU User file tailoring output library
ISPLUSR User link library
ISPIUSR User image library.

LIBDEF is a service that will only effect the ISPF DD’s. To alter the SYSPROC
concatenation sequence, use the TSO/E ALTLIB command.

Note: When the user ddname for the library type is defined, data set names
allocated to it are treated as being concatenated ahead of those specified on
the LIBDEF service request. The rules governing concatenation of data sets
apply.

Only the first 15 data sets allocated to these user ddnames will be searched by
ISPF before the LIBDEF application-level library.

In the case of ISPLLIB, EXCLDATA can be used instead of DATASET, and
EXCLLIBR instead of LIBRARY exclusively. Using one of these keywords
(EXCLDATA or EXCLLIBR) indicates that when searching for the LOAD module,
ISPF is only considering the application-level libraries defined by the LIBDEF
service. That is, user libraries and ISPF base libraries are not utilized when
EXCLDATA or EXCLLIBR is specified.

The QLIBDEF service allows an ISPF dialog to obtain the current LIBDEF
definition information. This information can be saved by the dialog and used later
to restore any LIBDEF definitions that may have been overlaid. For each LIBDEF

LIBDEF

82 z/OS V1R2.0 ISPF Services Guide



lib-type, the ID parameter and the type of ID is returned. The absence of an active
LIBDEF definition for a specific lib-type is indicated by the return code. For more
information about the QLIBDEF service, see “QLIBDEF – Query LIBDEF Definition
Information” on page 181.

LIBDEF Display Utility
The LIBDEF Display Utility displays all active and stacked LIBDEF definitions for
the current logical screen in a scrollable list. Optionally, a specific LIBDEF library
definition may be selected.

The ISPF system command, ISPLIBD [libtype] invokes the LIBDEF Display Utility.
The optional parameter, libtype, identifies a specific LIBDEF library definition to be
displayed. All LIBDEF definitions for the current logical screen are displayed if the
parameter is omitted, if the parameter is longer than 8 characters, or if the
parameter specifies ISPPROF as the library name.

For each LIBDEF definition displayed, the following information is provided:
v Stack indicator

An ″S″ is displayed to the left of the library name when a stacked LIBDEF
definition is presented.

v Library
v Type
v ISPxUSR indicator (for type DATASET only)
v Identification

For type DATASET/EXCLDATA this column contains the dataset name(s). The
associated ISPxUSR dataset name(s) is shown when the respective DDNAME is
allocated. The ISPxUSR data set(s) is not shown as part of a stacked definition.

For type LIBRARY/EXCLLIBR this column contains the library name (ddname)
followed by the first or only allocated dataset name.

The LIBDEF Display Utility supports the use of a LOCATE command. LOCATE is
used to locate a specific LIBDEF library name. Two command abbreviations, LOC
and L, are also supported.
LOCATE ISPPLIB

Locates the LIBDEF definition for ISPPLIB
LOC ISPMLIB

Locates the LIBDEF definition for ISPMLIB
L ISPSLIB

Locates the LIBDEF definition for ISPSLIB

Figure 6 shows a LIBDEF Utility display of all LIBDEF definitions. Figure 7 on
page 84 shows a display of a single LIBDEF definition, and Figure 8 on page 85
shows a LIBDEF stacked definition.

LIBDEF

Chapter 2. Description of ISPF Services 83



LIBDEF Utility
-   ISPLLSA                 ISPF LIBDEF Display       Row 1 to 13 of 16   
I

0     Library  Type    USR Identifier                                     HY
1                                                                         4.1
2     ISPFILE              ** LIBDEF not active **
3     ISPLLIB  EXCLDATA    ISPFPROJ.LWGMVS41.LOAD
4                          ISPFPROJ.DMTSO.LOAD                            4,B
5     ISPMLIB  DATASET     ISPFPROJ.LWGMVS32.MSGS                         HY
6                          ISPFPROJ.LWGMVS31.MSGS                         OC
7     ISPPLIB  DATASET  X  ISPFPROJ.LWG.PANELS                            SH
8                          ISPFPROJ.LWGMVS32.PANELS
9                          ISPFPROJ.LWGMVS31.PANELS
1     ISPSLIB  DATASET     ISPFPROJ.RGG.SKELS

ISPTABL  LIBRARY     MYTABLE
E                          ISPFPROJ.LWGMVS33.TABLES

ISPTLIB              ** LIBDEF not active **
MYGEN1   LIBRARY     MYTABLE

Command ===> _____________________________________ Scroll ===> CSR
O    F1=Help      F2=Split     F3=Exit      F7=Backward  F8=Forward

F9=Swap     F12=Cancel
F

Figure 6. ISPLIBD - all LIBDEF definitions

LIBDEF Utility
-   ISPLLSA                 ISPF LIBDEF Display         Row 1 to 3 of 3    
I

0     Library  Type    USR Identifier                                     HY
1                                                                         4.1
2     ISPPLIB  DATASET  X  ISPFPROJ.LWG.PANELS
3                          ISPFPROJ.LWGMVS32.PANELS
4                          ISPFPROJ.LWGMVS31.PANELS                       4,B
5   **End**                                                               HY
6                                                                         OC
7                                                                         SH
8
9
1

E

Command ===> _____________________________________ Scroll ===> CSR
O    F1=Help      F2=Split     F3=Exit      F7=Backward  F8=Forward

F9=Swap     F12=Cancel
F

Figure 7. ISPLIBD ISPPLIB - ISPPLIB LIBDEF definition

LIBDEF

84 z/OS V1R2.0 ISPF Services Guide



When you are in the Dialog Test utility (test environment), and you issue a LIBDEF
for a panel dataset from option 7.6, the LIBDEF is set up under the user
environment. In order to display a panel from the library for which you issued the
LIBDEF or to display the active LIBDEFs, you must go through a Dialog Test
utility interface.

For example, from Dialog Test’s option 7.6 issue:
LIBDEF ISPPLIB DATASET ID('xxxx.panels')

To display the active LIBDEFs, go to 7.1 (the Invoke Dialog Function/Selection
Panel) and type ISPLLS at the PGM prompt and ISPPLIB at the PARM prompt;
then press Enter.

Note: If you attempt to issue the ISPLIBD ISPPLIB command from the command
line on the Dialog Test utility’s option 7.6, the LIBDEF utility will indicate
that ISPPLIB has no active LIBDEFs. This is because the Dialog Test utility
runs in the test environment, not the user environment.

User Link Libraries
The LIBDEF ISPLLIB service can be used to specify load libraries containing
programs and command processors, which are part of an ISPF application. The
LIBDEF ISPLLIB definition causes load modules to be searched in the specified
load libraries by the SELECT service.

The LIBDEF library definitions are not searched by MVS member searches caused
by the execution of ATTACH, LINK, LOAD, or XCTL macros within the selected
program (SELECT PGM), or on the selection of authorized programs or commands.
The LIBDEF library definitions are searched for selected commands (SELECT
CMD).

The following rules apply:

LIBDEF Utility
-   ISPLLSA                 ISPF LIBDEF Display         Row 1 to 4 of 4    
I

0     Library  Type    USR Identifier                                     HY
1                                                                         4.1
2     ISPPLIB  DATASET  X  ISPFPROJ.LWG.PANELS
3                          ISPFPROJ.LWGMVS41.PANELS
4   S ISPPLIB  DATASET     ISPFPROJ.LWGMVS32.PANELS                       4,B
5                          ISPFPROJ.LWGMVS31.PANELS                       HY
6   **End**                                                               OC
7                                                                         SH
8
9
1

E

Command ===> _____________________________________ Scroll ===> CSR
O    F1=Help      F2=Split     F3=Exit      F7=Backward  F8=Forward

F9=Swap     F12=Cancel
F

Figure 8. ISPLIBD ISPPLIB - ISPPLIB LIBDEF stacked definition

LIBDEF

Chapter 2. Description of ISPF Services 85



v If the SELECT program service is invoked using ISPEXEC SELECT
PGM(MYPROG), MYPROG is considered a member of the load libraries
specified with LIBDEF ISPLLIB. If MYPROG then transfers control by using
MVS contents supervision macros such as ATTACH, LINK, LOAD, or XCTL, any
new requested program that exists only in the LIBDEF data set is not found, and
an 806-04 abend occurs. This is because ISPF links to MYPROG, and MVS is not
aware of the load library defined using LIBDEF ISPLLIB.

v If the SELECT program service is invoked using ISPEXEC SELECT
CMD(MYCMD), MYCMD is considered a member of the load libraries specified
with LIBDEF ISPLLIB. The command processor (a program coded to support a
unique argument list format) can then use MVS contents supervision macros
such as ATTACH, LINK, LOAD, or XCTL. This is because ISPF attaches
MYCMD as a subtask to ISPF. The load library, defined using LIBDEF ISPLLIB,
is passed as a task library to the subtask.

If LIBDEF is issued while in split screen, it will only affect the screen on which it is
issued, because each screen is a separate ISPF session with its own TCB and
tasklib.

Application Data Element Search Order
When two or more input libraries are to be searched for an item, the search begins
with the first library in a list and continues through the list until the item is found.
For example, if the item searched for is of type “Panels” and a “LIBDEF with
DATASET” service call is in effect, the input libraries (ISPPUSR, the LIBDEF
defined library, and ISPPLIB) are searched consecutively in the order shown. The
search stops when the item is found or when the last library has been searched.

The search of two or more output libraries proceeds in the same way, except that
the first definition found is used as the repository for the output.

Note: The image library with the associated ddname ISPILIB is not a required ISPF
library. If you plan to use image support in ISPF GUI mode, you must
allocate the image input data set to ddname ISPILIB before using the
images.

Table 2 on page 87 defines the search sequence for all item types.

Message Libraries
Definition of a message library with LIBDEF will cause a search of that data set for
the required message member prior to a search of the base message library. If the
member in the LIBDEF-defined message library has the same name as a member in
the base library, all messages within the base message data set member must be
included in the LIBDEF-defined message data set member. If the message member
found in the LIBDEF-defined message library does not contain the message being
searched for, another search will not be made for the message in the base message
library.

For example, if message ABCD009 is in the base library member ABCD00, but not
in the LIBDEF-defined message library member ABCD00, message ABCD009 will
not be found while the LIBDEF is active.

LIBDEF

86 z/OS V1R2.0 ISPF Services Guide



Table 2. Search Sequence for Libraries

LIBDEF with
EXCLDATA

LIBDEF with
EXCLLIBR

LIBDEF with
DATASET

LIBDEF with
LIBRARY

No LIBDEF

Panels Invalid Invalid
ISPPUSR
LIBDEF
ISPPLIB

LIBDEF
ISPPLIB

ISPPLIB

Messages Invalid Invalid
ISPMUSR
LIBDEF
ISPMLIB

LIBDEF
ISPMLIB

ISPMLIB

Table Input Invalid Invalid
ISPTUSR
LIBDEF
ISPTLIB

LIBDEF
ISPTLIB

ISPTLIB

Skeleton Invalid Invalid
ISPSUSR
LIBDEF
ISPSLIB

LIBDEF
ISPSLIB

ISPSLIB

Images Invalid Invalid
ISPIUSR
LIBDEF
ISPILIB

LIBDEF
ISPILIB

ISPILIB

Linklib
(See note
following
this table.)

JOB PACK
AREA

LIBDEF
LINK PACK

AREA
LINKLIB

JOB PACK
AREA

LIBDEF
LINK PACK

AREA
LINKLIB

JOB PACK AREA
ISPLUSR
LIBDEF
ISPLLIB
STEPLIB
LINK PACK AREA
LINKLIB

JOB PACK AREA
LIBDEF
ISPLLIB
STEPLIB
LINK PACK AREA
LINKLIB

JOB PACK
AREA

ISPLLIB
STEPLIB
LINK PACK

AREA
LINKLIB

Table Output Invalid Invalid
ISPTABU
LIBDEF

LIBDEF ISPTABL

File Tailoring
Output

Invalid Invalid
ISPFILU
LIBDEF

LIBDEF ISPFILE

Table Services
(Input) with
LIBRARY
Parameter

Invalid Invalid (Unchanged) LIBDEF
Allocated
Library

Table Services
(Output) with
LIBRARY
Parameter

Invalid Invalid LIBDEF (Unchanged)
Allocated
Library

File Tailoring
Services
(Output) with
LIBRARY
Parameter

Invalid Invalid LIBDEF (Unchanged)
Allocated
Library

Note: If a program in Linklib is to be attached as a command processor (that is, by
using the SELECT CMD parameter) and the command is not defined in the
TSO command characteristics table (ISPTCM), the search sequence
illustrated here does not apply. Refer to ISPF Planning and Customizing for
information about customizing ISPTCM for the correct search order.

In addition, when using a SELECT with NEWAPPL, you must include PASSLIB to
use the LIBDEFs you defined. See the SELECT service description for more details.

LIBDEF

Chapter 2. Description of ISPF Services 87



Command Invocation Format
ISPEXEC LIBDEF lib-type [DATASET|EXCLDATA|LIBRARY|EXCLLIBR]

[ID(dataset-list)|ID(libname)]

[COND|UNCOND|STACK|STKADD]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('LIBDEF ', lib-type
[,'DATASET '|'EXCLDATA'|'LIBRARY '|'EXCLLIBR']

[,dataset-list|libname]

[,'COND '|'UNCOND '|'STACK '|'STKADD ']);

Parameters
lib-type

Indicates which type of ISPF ddname application-level library definition is
being made. The value specified for lib-type must be padded with blanks, if
needed, to make the total length 8 characters. For generic libraries it is the
ddname as specified by the LIBRARY parameter of the corresponding table or
file tailoring service.

Users can specify the following types of libraries:
ISPMLIB Message library
ISPPLIB Panel library
ISPSLIB Skeleton library
ISPTLIB Table input library
ISPTABL Table output library
ISPFILE File tailoring output file
ISPLLIB Load module library
xxxxxxxx Generic library
ISPILIB Image library

ISPF ddname libraries can only be used for their intended purpose. Generic
libraries can be used for table input, table output, or file tailoring output.

DATASET
Indicates that ID specifies a list of cataloged data set names.

EXCLDATA
Indicates that ID specifies a list of cataloged data set names. (Can only be used
with ISPLLIB.)

LIBRARY
Indicates that ID specifies a ddname. See libname.

EXCLLIBR
Indicates that ID specifies a ddname. See libname. (Can only be used with
ISPLLIB.)

dataset-list
Indicates a list of cataloged data set names to be searched for the application.
A maximum of 15 data set names cam be listed. (See “dataset-list” on page 7
for the specification of data set lists.)

LIBDEF

88 z/OS V1R2.0 ISPF Services Guide



libname
Specifies the name of a previously allocated DD statement that defines the
application-level library or libraries.

COND
Specifies that the application-level library should be defined only if there is no
active application-level library for the specified type.

UNCOND
Specifies that the application-level library should be defined regardless of the
existence of an application-level library for the specified type. This is the
default.

STACK

Note: You can use STACK or STKADD on a LIBDEF statement. If both STACK
and STKADD parameters are used on a single LIBDEF statement, ISPF
uses only the last one specified.

Specifies the current state of the lib-type LIBDEF definition is to be stacked
prior to acting on the new request. Stacking occurs even when there is no
active LIBDEF definition for the specified lib-type. A null definition is stacked
when there is no active LIBDEF definition. This allows an application to issue
a LIBDEF stack request for a particular lib-type without knowing if an active
LIBDEF definition currently exists.

For example, it is valid to specify a LIBDEF definition for ISPPLIB and request
that the current ISPPLIB LIBDEF definition be stacked, even when no current
ISPPLIB LIBDEF definition exists. When the ISPPLIB LIBDEF definition that
requested stacking is removed, there will be no active ISPPLIB LIBDEF
definition in effect.

It is also valid to request stacking when resetting a particular LIBDEF
definition. For example, it is valid to specify a reset of the ISPPLIB LIBDEF
definition and request that the current ISPPLIB definition be stacked, even
when no current ISPPLIB LIBDEF definition exists. A subsequent reset request
of the ISPPLIB LIBDEF definition will restore the previously stacked ISPPLIB
LIBDEF definition, including a restoration of a null definition.

STKADD
Specifies the new LIBDEF request with the STKADD and DATASET
parameters is to be added to the existing lib-type LIBDEF definition. STKADD
concatenates the new LIBDEF request to the existing LIBDEFed lib-type
definition. No stacking is done.

Notes:

1. You can use STACK or STKADD on a LIBDEF statement. If both STACK
and STKADD parameters are used on a single LIBDEF statement, ISPF uses
only the last one specified.

2. The STKADD parameter is restricted to use with the DATASET parameter.
It is not for use with the EXCLDATA, LIBRARY, or EXCLLIBR parameters.
ISPF issues a severe error message if STKADD is used with those
parameters.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer”.

LIBDEF

Chapter 2. Description of ISPF Services 89

|
|
|

|
|
|
|

|

|
|
|

|
|
|
|

|
|



buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC invocation for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion

4 Application library does not exist for this type (when removing the
application library)

8 Application library already exists for this type (when COND is used)

12 ISPPROF was specified as the lib-type; invalid lib-type specified with
EXCLDATA or EXCLLIBR.

16 A libname was not allocated, or the dataset-list contains an invalid MVS
dsname.

20 Severe error.

Note: A return code of 0 can be received for a generic lib-type, even though the
library does not exist. No allocation verification is done until the generic
lib-type is referenced using the LIBRARY parameter on a file tailoring or
table service request.

Example 1 - The DATASET keyword
Assume that the user has issued the following ALLOCATE statements for a panel
library before entering ISPF:
ALLOCATE DATASET('ISPFPROJ.ABC.MYPAN') FILE(ISPPUSR) SHR
ALLOCATE DATASET('ISPFPROJ.ABC.PANELS') FILE(ISPPLIB) SHR

Next, the LIBDEF service is invoked with the DATASET keyword to define an
application-level panel library (a partitioned data set).
ISPEXEC LIBDEF ISPPLIB DATASET ID('ISPFPROJ.ABC.APPAN1',

'ISPFPROJ.ABC.APPAN2')

or alternately
CALL ISPLINK('LIBDEF ', 'ISPPLIB ', 'DATASET ',

'('ISPFPROJ.ABC.APPAN1','ISPFPROJ.ABC.APPAN2'')');

This example assumes that ISPFPROJ.ABC.MYPAN contains panels unique to the
user. Panels unique to the application are contained in partitioned data sets
ISPFPROJ.ABC.APPAN1 and ISPFPROJ.ABC.APPAN2.

The search sequence for panel APPLPAN1 is as follows:
1. Search for the member APPLPAN1 in ISPFPROJ.ABC.MYPAN
2. Search for the member APPLPAN1 in ISPFPROJ.ABC.APPAN1
3. Search for the member APPLPAN1 in ISPFPROJ.ABC.APPAN2
4. Search for the member APPLPAN1 in ISPFPROJ.ABC.PANELS

If the LIBDEF service had not been invoked, only ISPFPROJ.ABC.PANELS would
have been searched for member APPLPAN1. The user library would not be
searched.

To clear the LIBDEF after setting it, use either

LIBDEF

90 z/OS V1R2.0 ISPF Services Guide

|
|
|
|

|
|

||

||
|

||

||
|

||
|

||

|
|
|
|

|
|
|

|
|

|
|

|
|

|

|
|

|
|
|

|
|
|
|
|

|
|
|

|



'ISPEXEC LIBDEF ISPPLIB'
or
'ISPEXEC LIBDEF ISPPLIB DATASET()'

or additionally
CALL ISPLINK('LIBDEF ', 'ISPPLIB ', ' ',' ');
or
CALL ISPLINK('LIBDEF ', 'ISPPLIB ', 'DATASET ','()');

Example 2 - The EXCLDATA keyword
Assume that the user has issued the following ALLOCATE statements for a user
link library before entering ISPF:
ALLOCATE DATASET('ISPFPROJ.ABC.MYMOD') FILE(ISPLUSR) SHR
ALLOCATE DATASET('ISPFPROJ.ABC.LLOAD') FILE(ISPLLIB) SHR

Next, the LIBDEF service is invoked with the EXCLDATA keyword to define an
application-level link library (a partitioned data set).
ISPEXEC LIBDEF ISPLLIB EXCLDATA ID('ISPFPROJ.ABC.APMOD1',

'ISPFPROJ.ABC.APMOD2')

or alternately
CALL ISPLINK('LIBDEF ', 'ISPLLIB ', 'EXCLDATA',

'('ISPFPROJ.ABC.APMOD1','ISPFPROJ.ABC.APMOD2'')');

This example assumes that MYMOD contains programs or commands unique to
the user. Programs unique to the application are contained in partitioned data sets
ISPFPROJ.ABC.APMOD1 and ISPFPROJ.ABC.APMOD2.

The search sequence for program APPLMOD1 is as follows:
1. Search for the member APPLMOD1 in ISPFPROJ.ABC.APMOD1
2. Search for the member APPLMOD1 in ISPFPROJ.ABC.APMOD2

If the LIBDEF service had not been invoked, only ISPFPROJ.ABC.LLOAD would
have been searched for member APPLMOD1. The user library would not be
searched.

Example 3 - The LIBRARY keyword
Assume the user has issued the following ALLOCATE statements for an
application-level panel library prior to entering ISPF:
ALLOCATE DATASET('ISPFPROJ.ABC.APPAN1',

'ISPFPROJ.ABC.APPAN2') FILE(APPLIB) SHR
ALLOCATE DATASET('ISPFPROJ.ABC.MYPAN') FILE(ISPPUSR) SHR
ALLOCATE DATASET('ISPFPROJ.ABC.PANELS') FILE(ISPPLIB) SHR

Next, the LIBDEF service is invoked with the LIBRARY keyword to define an
application-level panel libname.
ISPEXEC LIBDEF ISPPLIB LIBRARY ID(APPLIB)

or alternately
CALL ISPLINK('LIBDEF ', 'ISPPLIB ', 'LIBRARY ', 'APPLIB ');

The search sequence, using the APPLIB definition, for panel APPLPAN1 is as
follows:
1. Search for the member APPLPAN1 in ISPFPROJ.ABC.APPAN1
2. Search for the member APPLPAN1 in ISPFPROJ.ABC.APPAN2.

LIBDEF

Chapter 2. Description of ISPF Services 91

|
|
|

|

|
|
|

|
|
|

|
|

|
|

|
|

|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|

|

|

|
|
|
|



The search sequence, using the ISPPLIB definition, for panel APPLPAN1 is as
follows:
v Search for the member APPLPAN1 in ISPFPROJ.ABC.PANELS.

If the LIBDEF service had not been invoked, only ISPFPROJ.ABC.PANELS would
have been searched for APPLPAN1. The user library would not be searched.

Example 4 - The EXCLLIBR keyword
Assume the user has issued the following ALLOCATE statements for an
application-level link library prior to entering ISPF:
ALLOCATE DATASET('ISPFPROJ.ABC.APMOD1',

'ISPFPROJ.ABC.APMOD2') FILE(APLLIB) SHR
ALLOCATE DATASET('ISPFPROJ.ABC.MYMOD') FILE(ISPLUSR) SHR
ALLOCATE DATASET('ISPFPROJ.ABC.LLOAD') FILE(ISPLLIB) SHR

Next, the LIBDEF service is invoked with the EXCLLIBR keyword to define an
application-level user link library.
ISPEXEC LIBDEF ISPLLIB EXCLLIBR ID(APLLIB)

or alternately
CALL ISPLINK('LIBDEF ', 'ISPLLIB ', 'EXCLLIBR', 'APLLIB ');

The search sequence for program APPLMOD1, using the APLLIB definition, is as
follows:
1. Search for the member APPLMOD1 in ISPFPROJ.ABC.APMOD1
2. Search for the member APPLMOD1 in ISPFPROJ.ABC.APMOD2.

If the LIBDEF service had not been invoked, only ISPFPROJ.ABC.LLOAD would
have been searched for APPLMOD1. The user library would not be searched.

Example 5
Assume the following LIBDEF commands are executed:
ISPEXEC LIBDEF ISPPLIB
ISPEXEC LIBDEF ISPPLIB STACK

ISPEXEC LIBDEF ISPPLIB DATASET ID('ISPFPROJ.LWG.PANELS') STACK

ISPEXEC LIBDEF ISPPLIB DATASET ID('ISPFPROJ.LWGMVS33.PANELS') STACK

The execution of these commands produces the following results:
1. The first LIBDEF resets the ISPPLIB LIBDEF definition. This is considered a

″null″ definition for ISPPLIB.
2. The second LIBDEF stacks the previous ″null″ definition for ISPPLIB and resets

the ISPPLIB LIBDEF definition. This is the second ″null″ definition for ISPPLIB.
3. The third LIBDEF stacks the previous ″null″ definition for ISPPLIB and

establishes the ISPPLIB definition for dataset ’ISPFPROJ.LWG.PANELS’.
4. The fourth LIBDEF stacks the previous ISPPLIB definition for dataset

’ISPFPROJ.LWG.PANELS’ and establishes the ISPPLIB definition for dataset
’ISPFPROJ.LWGMVS33.PANELS’.

Next, the following LIBDEF service calls are issued:
ISPEXEC LIBDEF ISPPLIB (restores 'ISPFPROJ.LWG.PANELS')
Return code = 0

ISPEXEC LIBDEF ISPPLIB (restores stacked "null" definition)

Return code = 0

LIBDEF

92 z/OS V1R2.0 ISPF Services Guide

|
|
|

|
|

|
|
|

|
|
|
|

|
|

|

|

|

|
|
|
|

|
|

|
|

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|

|

|
|
|
|
|
|



ISPEXEC LIBDEF ISPPLIB (restores stacked "null" definition)

Return code = 0

ISPEXEC LIBDEF ISPPLIB

Return code = 4

The preceding service calls produce the following results:
1. The first LIBDEF reset restores the ISPPLIB definition for dataset

’ISPFPROJ.LWG.PANELS’.
2. The second LIBDEF reset restores the stacked ″null″ definition for ISPPLIB. This

is the ″null″ definition which issued the keyword, STACK.
3. The third LIBDEF restores the stacked ″null″ definition. This is the ″null″

definition which did not issue the keyword, STACK.
4. The fourth LIBDEF receives a return code of 4 because there is nothing in the

stack and there is no active ISPPLIB definition.

Example 6 — STKADD
Assume the following LIBDEF commands are executed:
ISPEXEC LIBDEF ISPPLIB
ISPEXEC LIBDEF ISPPLIB STACK

ISPEXEC LIBDEF ISPPLIB DATASET ID('ISPFPROJ.LWG.PANELS') STACK

ISPEXEC LIBDEF ISPPLIB DATASET ID('ISPFPROJ.ABC.PANELS') STKADD

The execution of these commands produces the following results:
1. The first LIBDEF resets the ISPPLIB LIBDEF definition. This is considered a

″null″ definition for ISPPLIB.
2. The second LIBDEF stacks the previous ″null″ definition for ISPPLIB and resets

the ISPPLIB LIBDEF definition. This is the second ″null″ definition for ISPPLIB.
3. The third LIBDEF stacks the previous ″null″ definition for ISPPLIB and

establishes the ISPPLIB definition for dataset ’ISPFPROJ.LWG.PANELS’.
4. The fourth LIBDEF concatenates the data set ’ISPFPROJ.ABC.PANELS’ ahead of

the data set ’ISPFPROJ.LWG.PANELS’ in the current ISPPLIB definition.

After the third LIBDEF service call the LIBDEF Display Utility would show:

LIBDEF Utility
ISPF LIBDEF Display Row 1 to 11 of 11

Command ===> Scroll ===> PAGE

Library Type USR Identifier
ISPFILE ** LIBDEF not active **
ISPILIB ** LIBDEF not active **
ISPLLIB ** LIBDEF not active **
ISPMLIB ** LIBDEF not active **
ISPPLIB DATASET ISPFPROJ.LWG.PANELS

S ISPPLIB ** LIBDEF not active **
S ISPPLIB ** LIBDEF not active **

ISPSLIB ** LIBDEF not active **
ISPTABL ** LIBDEF not active **
ISPTLIB ** LIBDEF not active **

After the fourth LIBDEF service call the LIBDEF Display Utility would show:

LIBDEF

Chapter 2. Description of ISPF Services 93

|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|



LIBDEF Utility
ISPF LIBDEF Display Row 1 to 11 of 11

Command ===> Scroll ===> PAGE

Library Type USR Identifier
ISPFILE ** LIBDEF not active **
ISPILIB ** LIBDEF not active **
ISPLLIB ** LIBDEF not active **
ISPMLIB ** LIBDEF not active **
ISPPLIB DATASET ISPFPROJ.ABC.PANELS

ISPFPROJ.LWG.PANELS
S ISPPLIB ** LIBDEF not active **
S ISPPLIB ** LIBDEF not active **

ISPSLIB ** LIBDEF not active **
ISPTABL ** LIBDEF not active **
ISPTLIB ** LIBDEF not active **

Next, the following LIBDEF service calls are issued:
ISPEXEC LIBDEF ISPPLIB (restores stacked "null" definition)

Return code = 0
ISPEXEC LIBDEF ISPPLIB (restores stacked "null" definition)

Return code = 0
ISPEXEC LIBDEF ISPPLIB

Return code = 4

LIST – Write Lines to the List Data Set
The LIST service allows a dialog to write data lines directly (without using print
commands or utilities) to the ISPF list data set. You specify the name of the dialog
variable containing the data to be written on the LIST service request. The amount
of data that can be written with one LIST request is one or more lines totaling up
to 32 767 bytes, the maximum size of the dialog variable.

The list data set, if allocated, is normally processed when you exit ISPF. A LIST
command is available to allow you to process the list data set without exiting ISPF.

Command Invocation Format
ISPEXEC LIST BUFNAME(dialog-variable-name)

LINELEN(line-length)

[PAGE]

[SINGLE|DOUBLE|TRIPLE]

[OVERSTRK]

[CC]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);
OR

CALL ISPLINK ('LIST ', dialog-variable-name, line-length

[,'PAGE ']

[,'SINGLE '|'DOUBLE '|'TRIPLE ']

LIBDEF

94 z/OS V1R2.0 ISPF Services Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|



[,'OVERSTRK']

[,'CC ']);

Parameters
dialog-variable-name

Specifies the name of the dialog variable that contains the text (32,767 bytes
maximum) to be written to the list data set.

line-length
Specifies the length of each line in the buffer being passed to ISPF. ISPF
truncates these lines if the line-length specified is greater than the truncation
value in system variable ZLSTTRUN. The line-length must have an unsigned
integer value and, for a call, must be a fullword fixed integer.

PAGE
Specifies that the first data line of this LIST service request is to be written to
the list data set preceded by a page eject carriage control character. The spacing
of the remaining lines is determined by the SINGLE, DOUBLE, or TRIPLE
keyword specified. PAGE is ignored if the CC keyword is specified.

SINGLE
Specifies that each line of data is to be written to the list data set preceded by
a single space carriage control character. SINGLE is the default line spacing
keyword value. SINGLE is ignored if the CC keyword is specified.

DOUBLE
Specifies that each line of data is to be written to the list data set preceded by
a double space carriage control character. DOUBLE is ignored if the CC
keyword is specified.

TRIPLE
Specifies that each line of data is to be written to the list data set preceded by
a triple space carriage control character. TRIPLE is ignored if the CC keyword
is specified.

OVERSTRK
Specifies that each line of data is to be written with overstrikes. That is, the
line is first written with the line spacing specified, then written again with the
line spacing suppressed. This allows a dialog to request text highlighting on
printed output. OVERSTRK is ignored if the CC keyword is specified.

CC
Specifies that carriage control is to be provided by the dialog as the first byte
of each data line. Specifying CC nullifies specification of the PAGE, SINGLE,
DOUBLE, TRIPLE, or OVERSTRK keyword. If CC is specified, the value
specified for line-length should include one byte for the carriage control
character.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

LIST

Chapter 2. Description of ISPF Services 95

|
|
|
|

|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|



Return Codes
The following return codes are possible:

0 Normal completion.

8 Maximum line length or data set LRECL exceeded; data has been
truncated.

12 Specified dialog variable not found.

20 Severe error.

Formatting Data to be Written to the List Data Set
ISPF writes data to the list data set exactly as received in the dialog variable,
which acts as the data buffer. The dialog must provide any data formatting or
centering prior to passing the data to ISPF. The length of each data line passed to
ISPF is the value of the line-length parameter specified on the LIST service request.
If the line-length value is greater than or equal to the length of the passed data,
ISPF writes the data as a single line in the list data set. If the line-length value is
less than the length of the passed data, ISPF writes the data in multiple lines. If the
line-length value specified is zero and CC is not specified, ISPF writes one blank
line to the list data set. If CC is specified, the line length specified must be at least
one (to accommodate the carriage control character); otherwise, a severe error
results.

List Data Set Characteristics Affect the LIST Service
The dialog user can specify the logical record length (LRECL) and maximum line
length values for the list data set by using SETTINGS option 0.ISPF uses these two
values in determining where truncation of lines written to the list data set is to
occur.

The value in system variable ZLSTTRUN defines where ISPF is to truncate lines
written to the list data set.This value is not directly alterable by the dialog. The
value in ZLSTTRUN is the lesser of:
1. LRECL minus 1 (fixed-record format data sets) or LRECL minus 5

(variable-record format data sets)
The logical record length can be established for the list data set prior to the
ISPF session (by preallocating the data set), or, if that is not the case, it can be
specified on SETTINGS option 0.

2. LINE LENGTH - Default value specified on SETTINGS option 0.

Controlling Line Spacing, Page Eject, and Highlighting
Line spacing and page ejects can be under control of either the dialog or ISPF. If
the dialog specifies CC on the LIST service request, the dialog controls all carriage
functions, using the first byte of each line passed to ISPF as a carriage-control
character. Therefore, when CC is specified on the LIST service request, ISPF ignores
any SINGLE, DOUBLE, TRIPLE, PAGE, and OVERSTRK keywords.

ISPF causes an automatic page eject (regardless of CC keyword status) for a LIST
service request that causes information to be written to a list data set for the first
time in the session.

How ISPF Controls Printer Functions (CC Not Specified)
When the dialog does not specify CC on the LIST service request, ISPF appends a
carriage control byte ahead of each line to be written to the list data set.

LIST

96 z/OS V1R2.0 ISPF Services Guide

|

|

||

||
|

||

||

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|

|
|
|

|

|

|
|
|
|
|

|
|
|

|
|
|



The dialog can include the SINGLE, DOUBLE, or TRIPLE keyword on the LIST
service request to tell ISPF how lines are to be spaced when written to the list data
set. Single spacing is the default value. The dialog can also specify, along with the
line spacing keyword, the OVERSTRK keyword on the LIST service to cause
highlighting.

The optional PAGE keyword on the LIST request tells ISPF that the first line
written by this request is to include a page eject control character. Thereafter, page
ejects are caused by:
v ISPF providing the page eject carriage control when the lines-per-page value (1

to 999) in system variable ZLSTLPP is reached, or
v The dialog specifying the PAGE keyword on a subsequent LIST service request.

How the Dialog Controls Printer Functions (CC Specified)
When the dialog specifies CC on the LIST service request, ISPF ignores any other
printer control keywords. ISPF then relies on the dialog to supply the printer
control information as the first byte of each line in the data buffer to be written.
ISPF does not check the validity of the characters included for carriage control.

Using System Variables ZLSTNUML and ZLSTLPP
ZLSTNUML

This four-byte shared pool variable contains the number of lines that have
been written to the current page in the list data set. If the list data set is
not open the value in ZLSTNUML is zero.

ZLSTNUML is set by ISPF and is not directly alterable by a dialog.

ZLSTLPP
This four-byte shared pool variable contains the value that specifies what
the maximum number of lines per page written to the list data set is to be.

You can set the value in ZLSTLPP (lines-per-page) by using SETTINGS
option 0. ZLSTLPP is not directly alterable by a dialog.

Dialogs that provide carriage control characters can test variables ZLSTNUML and
ZLSTLPP for values to determine when printing should begin on a new page.

The ANSI-defined carriage control characters in the chart below are recognized by
the LIST service for updating (incrementing the number of page line spaces used)
the value of ZLSTNUML. If the dialog passes any other carriage control character
along with the CC keyword, the character is written to the list data set, but does
not affect the value of ZLSTNUML.

The carriage control characters, whether supplied to ISPF with each line to be
printed or supplied by ISPF, cause the actions listed in the chart below:

Character Action (before printing) ZLSTNUML is
blank Space 1 line Incremented 1
0 Space 2 lines " 2
- Space 3 lines " 3
+ Suppress spacing Not changed
1 Skip to line 1 Set to 1

on new page

LIST

Chapter 2. Description of ISPF Services 97

|
|
|
|
|

|
|
|

|
|

|

|
|
|
|
|

|

|
|
|
|

|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|



How Carriage Control Characters Affect Truncation
ISPF counts only data characters, not the carriage-control character, in calculating
the point at which truncation is to occur. A dialog can determine what the
truncation value is by querying system variable ZLSTTRUN in the shared variable
pool.

The carriage-control byte must be taken into account when calculating where
truncation will occur. For example, assume that the truncation value in ZLSTTRUN
is 79, indicating that a maximum of 79 characters per list data set line, not
including carriage-control, are allowed. Also, assume the dialog passes a line of 80
characters to be written to the list data set. Truncation is as follows:
v If the dialog has specified the CC (carriage-control) keyword on the LIST

request, the first byte in the line passed to ISPF is the carriage-control character,
followed by 79 data characters. Because ISPF does not count the carriage-control
character as one of the truncation value (79), no truncation occurs.

v If the dialog has not specified the CC keyword, ISPF appends the
carriage-control byte ahead of the line of 80 data characters passed by the dialog.
In this case, the truncation value of 79 causes one data character to be truncated.

Example 1
Using three LIST service requests, write three lines, containing the text ’Line 1’,
’Line 2’, and ’Line 3’ respectively, to the list data set. The text is to start at the top
of a new page, and be double spaced.

In preparation:
v Set dialog variable LINE1 to the value ’Line 1’
v Set dialog variable LINE2 to the value ’Line 2’
v Set dialog variable LINE3 to the value ’Line 3’

Then issue:
ISPEXEC LIST BUFNAME(LINE1) LINELEN(6) PAGE
ISPEXEC LIST BUFNAME(LINE2) LINELEN(6) DOUBLE
ISPEXEC LIST BUFNAME(LINE3) LINELEN(6) DOUBLE

or alternately

Set variable LEN to 6 and issue:
CALL ISPLINK ('LIST ','LINE1 ',LEN,'PAGE ');
CALL ISPLINK ('LIST ','LINE2 ',LEN,' ','DOUBLE ');
CALL ISPLINK ('LIST ','LINE3 ',LEN,' ','DOUBLE ');

Example 2
Write the same three lines as in Example 1, but with one LIST service request.

In preparation, set dialog variable LSTTEXT to the value:
'Line 1Line 2Line 3'

Then issue:
ISPEXEC LIST BUFNAME(LSTTEXT) LINELEN(6) PAGE DOUBLE

or alternately

Set variable LEN to 6 and issue:
CALL ISPLINK ('LIST ','LSTTEXT ',LEN,'PAGE ','DOUBLE ');

LIST

98 z/OS V1R2.0 ISPF Services Guide

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|

|
|
|
|

|

|
|
|

|

|

|
|
|

|

|

|

|

|

|

|

|

|



Example 3
Write the same three lines as in the previous examples, but with the carriage
control characters being passed to ISPF.

In preparation, set dialog variable LSTTEXT to the value:
'1Line 10Line 20Line 3'

The characters ’1’ and ’0’ preceding the word ’Line’ in LSTTEXT are carriage
control characters for page eject and double space respectively.

Then issue:
ISPEXEC LIST BUFNAME(LSTTEXT) LINELEN(7) CC

or alternately

Set variable LEN to 7 and issue:
CALL ISPLINK ('LIST ','LSTTEXT ',LEN,' ',' ',' ','CC ');

Note that the line-length value has been increased by one to account for the
carriage control byte.

Example 4
Print the same three lines as in Example 3. This time, assume that ZLSTTRUN has
a value of 5. In preparation, set up conditions to cause the value of ZLSTTRUN to
be 5. This value is the lesser of:
v The logical record length of the list data set minus one (fixed format) or the

record length minus five (variable format).
v The value specified for list data set line length using SETTINGS option 0.

LSTTEXT is set the same way, and the LIST request issued the same way, as for
Example 3. The difference in data written to the list data set for Example 4
compared to Example 3 illustrates the truncation:

Example 3 Example 4
1Line 1 1Line

0Line 2 0Line

0Line 3 0Line

LMCLOSE – Close a Data Set
The LMCLOSE service closes the data set associated with a given data ID. For each
LMOPEN invocation, you should invoke a matching LMCLOSE service when
processing is complete. Otherwise, unwanted data can be read from or written to
the data set.

If LMINIT is issued with an enqueue (ENQ) of SHRW and LMOPEN is issued
with the OUTPUT option, it is important that an LMCLOSE be issued when the
dialog has finished processing the data set, since the DASD volume is reserved
until LMCLOSE is invoked. On output, if the data is sequential, the LMCLOSE
service writes the last physical block.

Command Invocation Format
ISPEXEC LMCLOSE DATAID(data-id)

LIST

Chapter 2. Description of ISPF Services 99

|

|
|

|

|

|
|

|

|

|

|

|

|
|

|

|
|
|

|
|

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|

|



Call Invocation Format
CALL ISPLINK ('LMCLOSE ',data-id);
OR

CALL ISPEXEC (buf-len, buffer);

Parameters
data-id

The data ID associated with the data set to be closed. The data ID is generated
by the LMINIT service. The maximum length of this parameter is 8 characters.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Data set is not open.

10 No ISPF library or data set associated with the given data ID; that is,
LMINIT has not been completed.

20 Severe error; unable to continue.

Example
This example invokes the LMCLOSE service to close the data set associated with
the data ID in variable DDVAR.

Command Invocation
ISPEXEC LMCLOSE DATAID(&DDVAR)

Call Invocation
CALL ISPLINK('LMCLOSE ',DDVAR);
OR

Set the program variable BUFFER to contain:
BUFFER = 'LMCLOSE DATAID(&DDVAR)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMCOMP – Compresses a Partitioned Data Set
The LMCOMP service compresses a data set. The installation-supplied compress
exit is used, or, if there is no exit, IEBCOPY is used. Completion of the LMINIT
service specifying ENQ(EXCLU) is required before you invoke LMCOMP.

LMCLOSE

100 z/OS V1R2.0 ISPF Services Guide

|

|
|
|
|

|

|

|
|
|

|
|

|
|
|
|

|

|

||

||

||
|

||

|

|
|

|
|

|
|
|

|

|

|
|

|

|
|

|
|
|



Command Invocation Format
ISPEXEC LMCOMP DATAID(data-id)

Call Invocation Format
CALL ISPLINK ('LMCOMP ',data-id);
OR

CALL ISPEXEC (buf-len,buffer);

Parameters
data-id

The data ID associated with the data set to be compressed. The data ID has
been generated by the LMINIT service. The data ID must be associated with
only one data set. Concatenations are not allowed. The maximum length of this
parameter is 8 characters.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

Return Codes
The compress request exit routine is responsible for handling all errors that occur
while it is in control. The compress exit must pass the return codes to LMCOMP.
Refer to ISPF Planning and Customizing for information on the Compress Exit.

The following return codes are possible:

0 Successful completion.

8 Library type is a PDSE and cannot be compressed

10 No data set associated with the given data ID.

12 One of the following:
v Data set not partitioned
v Data set specified not allocated
v Data set is open
v Data set is not moveable
v Data set must be allocated exclusively. Use ENQ(EXCLU) in LMINIT

service.
v Concatenated libraries are not allowed for LMCOMP.

20 Severe error; unable to continue.

Example
This example invokes the LMCOMP service to compress the data set associated
with the data ID in variable DDVAR.

Command Invocation
ISPEXEC LMCOMP DATAID(&DDVAR)

LMCOMP

Chapter 2. Description of ISPF Services 101

|

|

|

|
|
|
|

|

|

|
|
|
|
|

|
|

|
|
|
|

|

|
|
|

|

||

||

||

||
|
|
|
|
|
|
|

||

|

|
|

|
|



Call Invocation
CALL ISPLINK('LMCOMP ',DDVAR);
OR

Set the program variable BUFFER to contain:
BUFFER = 'LMCOMP DATAID(&DDVAR)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMCOPY – Copy Members of a Data Set
The LMCOPY service copies members of a partitioned data set, or copies an entire
sequentialdata set. Packing data, locking members, replacing members, and
automatic truncation are optional. Only fixed- and variable-record format data sets
can be packed.

Completion of the LMINIT service is required before you can invoke LMCOPY. See
“LMINIT – Generate a Data ID for a Data Set” on page 121 for information that
can help prevent some common I/O errors that might occur when using the
LMCOPY service. LMCOPY requires that the “to data-id” and “from data-id” be
closed prior to invocation.

Notes:

1. FROMID and TODATAID can refer to the same data set but they cannot have
the same data-id.

2. LMCOPY does not support the copying of unmovable data sets (data set
organization POU or PSU).

3. LMCOPY does not automatically process alias members unless one of the
following is true:
v all members of the data set are processed.
v a member pattern is used and both the main member and the alias member

are included in that pattern.

Copying an alias member by itself will result in a new member being created,
even if the main member has already been copied.

Command Invocation Format
ISPEXEC LMCOPY FROMID(from-data-id)

[FROMMEM(from-member-name)]

TODATAID(to-data-id)

[TOMEM(to-member-name)]

[REPLACE]

[PACK]

[TRUNC]

[LOCK]

[SCLMSET(Y|N)]

LMCOMP

102 z/OS V1R2.0 ISPF Services Guide

|
|
|

|

|

|
|

|

|
|

|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|

|

|
|

|
|



Call Invocation Format
CALL ISPLINK ('LMCOPY ', from-data-id

,[from-member-name]

,to-data-id

,[to-member-name]

,['REPLACE ']

,['PACK ']

,['TRUNC ']

,['LOCK ']

,['YES'|'NO'|' ']);

OR

CALL ISPEXEC (buf-len,buffer);

Parameters
from-data-id

The data ID associated with the data set to be copied. The data ID has been
generated by the LMINIT service. The maximum length of this parameter is 8
characters.

from-member-name
The member name or pattern of the members to be moved. An asterisk (*)
indicates that all members are to be moved. If the “from” data set is
partitioned, this parameter is required. If it is sequential, this parameter is not
allowed. The maximum length of this parameter is 8 characters.

to-data-id
The data ID associated with the data set to be copied to. The data ID has been
generated by the LMINIT service. The maximum length of this parameter is 8
characters.

to-member-name
The name of the member being moved to the “to” data set. If a name is not
specified, the name of the member in the “from” data set is used. If the “from”
data set is sequential and the “to” data set is partitioned, this parameter is
required. If the “to” data set is sequential, this parameter is not allowed. The
maximum length of this parameter is 8 characters.

REPLACE
Like-named members in the “to” data set are to be replaced. If this parameter
is not specified and a like-named member exists in the “to” data set, the copy
function is performed on all other members except like-named members, and a
return code of 12 is issued.

If a list of members is being copied and one cannot be replaced, a message is
issued indicating how many members were copied and how many were not
replaced.

PACK
Data is stored in the “to” data set in packed format. If this parameter is not
specified, data is copied and stored as unpacked.

LMCOPY

Chapter 2. Description of ISPF Services 103



TRUNC
Truncation is to occur if the logical record length of the “to” data set is less
than the logical record length of the “from” data set. If this parameter is not
specified and the logical record length of the “to” data set is less than the
logical record length of the “from” data set, the copy is not performed and a
return code of 16 is issued.

LOCK
The LOCK parameter is no longer used since the removal of LMF from the
ISPF product, but is left in for compatibility. If LOCK is specified, the
LMCOPY service will fail with return code 12. If you want to be able to specify
YES and have the LMCOPY ignore the value, change the
FAIL_ON_LMF_LOCK keyword value in the ISPF Configuration Table to NO.

The members are to be locked. The data set associated with the from-data-id
must be a LMF-controlled ISPF library or partitioned data set. The member is
locked under the logon ID of the user performing the copy and lock. No other
user can change that member in the LMF-controlled library until the current
owner promotes it. If a member cannot be locked it is not copied.

If a list of members is being copied and one cannot be locked, processing stops
and a message is issued indicating how many members were copied.

SCLMSET
ISPF maintains a bit in the PDS directory to indicate whether a member was
last modified using SCLM or some function outside of SCLM. The SCLMSET
value indicates how to set this bit. YES indicates to set the bit ON. NO
indicates the bit should be OFF. If you want to keep the current setting for a
certain member, omit the SCLMSET parameter.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

4 Member not available, which indicates one of the following situations:
v The “From” data set is empty.
v No members matched the specified pattern in the “from” data set.

8

v The “From” member not found.
v Specified “To member name” same as specified “From member name”.

10 No data set is associated with the given data ID.

12 One of the following:
v A like-named member already exists in the ‘TO’ data set and the Replace

option was not specified.
v One or more members of the ’TO’ data set are ″in use″ by you or

another user and could not be copied
v Invalid data set organization

LMCOPY

104 z/OS V1R2.0 ISPF Services Guide

|
|
|
|
|

|
|
|
|
|

|
|



v Data set attribute invalid for copying or copying packed data
v Open error.
v LOCK parameter is specified.

16 Truncation error.

20 Severe error; unable to continue.

Example
This example invokes the LMCOPY service to copy all member names beginning
with the letter ‘L’ in the data set associated with the data ID in variable DDVAR to
the data set associated with the data ID in variable DDVAR2. Like-named members
in the “to” data set are replaced, the data is packed, and truncation will occur if
necessary.

Command Invocation
ISPEXEC LMCOPY FROMID(&DDVAR) FROMMEM(L*) +

TODATAID(&DDVAR2) REPLACE PACK TRUNC

Call Invocation
CALL ISPLINK('LMCOPY ',DDVAR,'L* ',DDVAR2,' ', 'REPLACE ',

'PACK ','TRUNC ');

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMCOPY FROMID(&DDVAR) FROMMEM(L*)

TODATAID(&DDAVAR2) REPLACE PACK TRUNC';

Set the program variable BUFLEN to the length of the variable BUFFER.

Issue the following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMDDISP – Data Set List Service
The LMDDISP service allows you to write your own data set list dialog. This
service is similar to ISPF option 3.4, the data set list utility, which displays the list
of data sets. The LMDDISP service displays any view of the data set list (Volume,
Space, Attrib, or Total) that you want to display first. You can then scroll to any
other view from the initial display view.

The LMDDISP service is given a data set list ID (dslist-id) which has been
associated with a data set level or volume or both by the LMDINIT service. The
LMDINIT generates a data set list ID from a data set level and/or volume. The
data set list ID must be freed by the LMDFREE service.

Command Invocation Format
ISPEXEC LMDDISP LISTID(dslist-id)

[VIEW(VOLUME|SPACE|ATTRIB|TOTAL)]
[CONFIRM(YES|NO)]
[PANEL(panel-name)]

LMCOPY

Chapter 2. Description of ISPF Services 105

|



Call Invocation Format
CALL ISPEXEC (buf-len,buffer);
OR

CALL ISPLINK('LMDDISP ', dslist-id
, ['VOLUME '|'SPACE '|'ATTRIB '|'TOTAL ']
, ['YES '|NO ']
, [panel-name]);

Parameters
dslist-id

A data set list ID associated with a data set name level or a volume or both by
the LMDINIT service. For more information about the data set level and how it
determines which data set names are to be included in the data set list, see
LMDINIT service.

VOLUME|SPACE|ATTRIB|TOTAL
The Volume view shows a data set list that contains data set names and the
volumes on which they reside. The list is sorted by data set name. Volume is
the default.

The Space view shows a data set list that contains data set names, tracks,
percentages used, extents, and devices. The list is sorted by data set name.

The Attrib view shows a data set list that contains data set names, data set
organizations, record formats, logical record lengths, and block sizes. The list is
sorted by data set name.

The Total view shows a data set list that contains all information displayed by
the Volume, Space, and Attrib views, plus the created, expired, and referred
dates. The list is sorted by data set name and has two lines per data set.

YES|NO
This parameter controls whether the Confirm Delete panel appears when using
the D (delete data set) line command from the displayed data set list. YES is
the default.

If YES is specified, ISPF displays the Confirm Delete panel. This gives you the
opportunity to change your mind and keep the data set. If you try to delete an
expired data set, the Confirm Purge panel appears following the Confirm
Delete panel.

If NO is specified, ISPF does not display the Confirm Delete panel. The data
set is deleted without your having to take any additional actions unless you
try to delete an unexpired data set. If this is the case, the Confirm Purge panel
appears.

panel-name
The name of the panel to use for displaying a data set list. The default is the
data set list found in option 3.4, the data set list utility. This can be a
customized panel that you provided. Refer to ISPF Planning and Customizing
for more information on developing a customized panel.

Return Codes
The following return codes are possible:

0 Normal completion.

LMDDISP

106 z/OS V1R2.0 ISPF Services Guide



8 Error building data set list. The error condition is described in the ISPF
system dialog variables.

10 A data set list does not exist for the list-id specified via keyword LISTID.

12 A keyword value is incorrect.

20 A severe error occurred while processing the data set list.

Example
The following example shows an invocation of LMDDISP which will display the
Volume view of a data set list with the Delete Data Set Confirmation panel. The
variable ID contains a data set list ID generated by the LMDINIT service.

Command Invocation
ISPEXEC LMDDISP LISTID('id') VIEW(VOLUME) CONFIRM(YES)

Call Invocation
CALL ISPLINK('LMDDISP ',DSLISTID,'TOTAL ','NO ');
OR

Set the program variable BUFFER to contain:
BUFFER = 'LMDDISP LISTID('id') VIEW(VOLUME) CONFIRM(YES)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

QUERYENQ – Return ENQs

Command Invocation Format
QUERYENQ TABLE(table-name)

QNAME(qname)
RNAME(rname)
REQ(pattern)
WAIT
LIMIT(limit)
SAVE(list-id)
XSYS

Call Invocation Format
CALL ISPLINK ('QUERYENQ' ,table-name

,qname
,rname
,pattern
,['WAIT ']
,limit
,list-id
,['XSYS ']);

OR
CALL ISPEXEC (buf-len, buffer);

Parameters
TABLE(table-name)

Table-name is a table that must not exist before the service is called. It is
returned to the user as an open, non-writable table. It is the caller’s
responsibility to delete the table with TBEND.

LMDDISP

Chapter 2. Description of ISPF Services 107

|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|



QNAME(qname)
Qname is a variable name. The variable can contain a name or prefix. A prefix
must end in an asterisk. The default is ’*’ (all qnames). Maximum length is 8
and must be fully padded if called from a compiled program, even though
imbedded blanks are allowed.

RNAME(rname)
Rname is a variable name. The variable can contain a name or prefix. A prefix
must end in an asterisk. The default is ’*’ (all rnames). The maximum length is
255 and must be fully padded or VDEFINED to a shorter length if called from
a compiled program because imbedded blanks are allowed.

Pattern
Pattern is a pattern that is used to limit the ENQ search to specific requestors.
The pattern can contain asterisks, which will match zero or more characters,
and percent signs, which will match one character. The value of pattern is the
actual pattern and not a variable name.

If the variable value is not a prefix (does not end in an asterisk before any
trailing blanks), it must be the exact length of the RNAME being requested.
For compiled programs, this can be controlled on the VDEFINE or VREPLACE
statement. The exceptions to this rule are for QNAMEs SPFEDIT and
SPFUSER. For SPFUSER requests, the variable value is padded or truncated to
7 characters. For SPFEDIT requests, variables less than 45 characters long will
be padded with blanks to 44 and treated like a prefix and variables longer than
44 characters, will be padded to 52 and not treated like a prefix. Variables
which are passed in as a prefix will be used as is.

WAIT
WAIT indicates that all waiting ENQs are returned. This shows all ENQ
contention known to the local system. RNAME and QNAME are ignored for
WAIT.

LIMIT(limit)
Limit is the maximum size of the table. The default is 5000. Zero (0) indicates
no limit. All GQSCAN requests are done with the XSYS=NO parameter of the
GQSCAN macro. This means that some ENQs on other systems may not be
returned.

List-id
List-id is an 8 character data set name qualifier which will be used to create a
data set named [prefix.userid].list-id.ENQLIST according to standard ISPF
naming conventions. The data set is a VB 332 data set containing each of the
same data as would be returned in the table. The order is Owner, System,
Disposition, Hold, Scope, Global, QNAME, and RNAME. RNAME is last
because trailing blanks are removed to reduce the size of the data set. A space
is added between each field.

XSYS
XSYS indicates that the XSYS=YES parameter should be used on the GQSCAN
macro. The default is to use XSYS=NO. This means that some ENQs on other
systems may not be returned. Use of the XSYS keyword may have significant
performance implications. See the documentation for the GQSCAN macro and
obtaining information on resource serialization for more information.

Variables Returned in Each Row of the Table
Table 3.

NAME SIZE DESCRIPTION

LMDDISP

108 z/OS V1R2.0 ISPF Services Guide

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

||

|||



Table 3. (continued)

ZENJOB 8 Job or address space name holding or
requesting the ENQ

ZENQNAME 8 Qname portion of the ENQ

ZENRNAME 255 Rname portion of the ENQ

ZENDISP 5 SHARE or EXCLU

ZENHOLD 4 OWN or WAIT

ZENSCOPE 7 SYSTEM or SYSTEMS

ZENSTEP 7 STEP or blank

ZENGLOBL 6 GLOBAL or blank

ZENSYST 8 System name

ZENRESV 7 RESERVE or blank

Return Codes
0 Table returned

2 Table returned or data set written, but XSYS parameter was not specified
and the system is running in STAR mode. The data returned may not
reflect all ENQs on all systems.

4 Table returned but truncated due to limit

8 No ENQs satisfy request

10 No ENQs satisfy the request, but XSYS parameter was not specified and
the system is running in STAR mode. The data returned may not reflect all
ENQs on all systems.

12 Table creation error. See message for more details.

14 The SAVE data set is in use by another user.

20 Severe error, most likely a TBADD failure.

LMDFREE – Free a Data Set List ID
The data set list free service (LMDFREE) removes a data set list id (dslist ID)
generated by the data list initialize service (LMDINIT).

Command Invocation Format
ISPEXEC LMDFREE LISTID(list-id)

Call Invocation Format
CALL ISPLINK ('LMDFREE ', list-id);
OR

CALL ISPEXEC (buf-len, buffer);

LMDDISP

Chapter 2. Description of ISPF Services 109

|

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|

||

||
|
|

||

||

||
|
|

||

||

||

|



Parameters
list-id

The LMDFREE service removes this dslist ID from the list of dslist IDs. The
LMDLIST and LMDFREE service cannot use the dslist ID for the remainder of
the TSO session.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
0 Normal completion.

8 Free dslist ID failed. The error condition is described in “System Variables
Used to Format Error Messages” on page 14.

10 No data set level or volume is associated with given dslist ID. LMDINIT
has not been completed.

20 Severe error; unable to continue.

Example
In this example the LMDFREE service frees a dslist ID stored in function pool
variable ID.

Command Invocation
ISPEXEC LMDFREE LISTID(&ID)

Call Invocation
CALL ISPLINK ('LMDFREE ', ID);
OR

Set the program variable BUFFER to contain:
BUFFER = 'LMDFREE LISTID(&ID)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMDINIT – Initialize a Data Set List
The LMDINIT service generates a data set list ID for a given data set level or
volume or both. A dialog uses the dslist ID to obtain a list of data sets and data set
information from the data set list service (LMDLIST). The LMDINIT service is
similar to the function provided by the LMINIT service.

To use LMDINIT, you must specify the following:
v A data set level or volume or both
v The name of the variable for LMDINIT to place the new dslist ID.

Each use of the LMDINIT service must eventually be followed by the LMDFREE
service to release the dslist ID and the data set list storage space.

LMDFREE

110 z/OS V1R2.0 ISPF Services Guide



Command Invocation Format
ISPEXEC LMDINIT LISTID(dslist-id-var)

{LEVEL(dsname-level)}
{VOLUME(volume-serial)}

Call Invocation Format
CALL ISPLINK ('LMDINIT ' ,dslist-id-var

,{dsname-level}
,{volume-serial});

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
dslist-id-var

The name of the ISPF function pool variable that stores the dslist ID of the
data set list. The LMDINIT service always generates a unique dslist ID. The
dslist ID is an input variable to the other library access services that work with
data sets, and is an output parameter from the LMDINIT service. The
maximum length for the dslist ID is 8 characters.

To invoke the service, you must specify the dslist ID variable name and Level,
Volume, or both. The Level and Volume are described below.

In the LMDINIT service, dslist-id-var is the name of the variable that stores the
data ID (for example, LISTID(DDVAR)). When you use the dslist ID keyword
with other services, you must pass the value of the variable (for example,
LISTID(&DDVAR)).

dsname-level
You may use this value to specify the level or levels of data sets displayed
with the dslist ID. The dsname-level is a string containing valid TSO data set
name qualifier patterns, separated by periods (‘.’). You can use asterisks and
percent signs as wildcards in the qualifiers. The LMDINIT service does not
select data sets with fewer levels than the dsname-level. You may also use an
optional data set list exit to control which data sets are included in the list.

volume-serial
Use this value to specify the volume serial of the VTOC that ISPF will use to
generate the list of data sets. This field has the same restrictions and syntax as
the Volume field under ISPF, option 3.4. Refer to the ISPF User’s Guide for a
complete description.

Return Codes
0 Normal completion. LMDINIT returns a unique dslist ID in the variable

specified in keyword LISTID.

8 The dslist ID was not created; the error condition is described in “System
Variables Used to Format Error Messages” on page 14.

12 A keyword value is incorrect.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

LMDINIT

Chapter 2. Description of ISPF Services 111



Example
In this example the LMDINIT service generates a dslist ID for a data set list
containing only the data sets in volume APL001. The LMDINIT service places the
dslist ID in variable VARNAME in the ISPF function pool.

Command Invocation
ISPEXEC LMDINIT LISTID(VARNAME) VOLUME(APL001);

Call Invocation
DCL DSVAR CHAR(8)
CALL ISPLINK ('VDEFINE ', 'DSVAR ', DSVAR, 'CHAR ',L8);

CALL ISPLINK ('LMDINIT ', 'DSVAR ', ' ', 'APL001 ');

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMDINIT LISTID(VARNAME) VOLUME(APL001)';

Set the program variable BUFLEN to the length of the variable BUFFER and issue
the following:
CALL ISPEXEC (BUFLEN, BUFFER);

In this example the LMDINIT service generates a dslist ID for a data set list
containing only the data sets with the first level qualifier “PROD” and a second
level qualifier starting with “ABC”.

Command Invocation
ISPEXEC LMDINIT LISTID(VARNAME) LEVEL(PROD.ABC*);

Call Invocation
DCL DSVAR CHAR(8)
CALL ISPLINK ('VDEFINE ', 'DSVAR ', DSVAR, 'CHAR ',L8);

CALL ISPLINK ('LMDINIT ', 'DSVAR ', 'PROD.ABC* ');

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMDINIT LISTID(VARNAME) LEVEL(PROD.ABC*)';

Set the program variable BUFLEN to the length of the variable BUFFER and issue
the following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMDLIST – List Data Sets
The data set list service (LMDLIST) generates and uses an internal list of data set
names associated with a unique data set list ID (dslist ID) obtained from the
LMDINIT service.

The names in the internal list can be passed to a dialog with data set information
(if specified) using two options:
v The LIST option returns the information one name at a time through the

function pool variables.
v The SAVE option writes the names and information to a data set.

LMDINIT

112 z/OS V1R2.0 ISPF Services Guide



The internal list is not dynamic. Data sets created after the invocation of the
LMDINIT service will not added to the list. To update the list to include new data
set names, use the LMDFREE service to release the current dslist ID and reissue
the LMDINIT and LMDLIST services, or reissue the LMDINIT and LMDLIST
services using a different dslist ID.

Command Invocation Format
ISPEXEC LMDLIST LISTID(dslist-id)

[OPTION(LIST|FREE|SAVE)]
[DATASET(dataset-var)]
[STATS(YES|NO)]
[GROUP(group)]

Call Invocation Format
CALL ISPLINK ('LMDLIST ' ,dslist-id

,'LIST '|'FREE '|'SAVE '
,dataset-var
,['YES '|'NO ']
,[group )];

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
dslist ID

A data set list ID associated with a data set name level or volume or both by
the LMDINIT service. For information about the data set level and how data
set names are included in the data set list see “LMDINIT – Initialize a Data Set
List” on page 110.

LIST|FREE|SAVE
These options determine whether the LMDLIST service returns the names on
the internal list to the dialog, frees the storage used by the list, or writes the
list to a data set.

LIST When you use the LMDLIST LIST option for the first time, the
LMDLIST service generates an internal list. If you initialize the
dataset-var to blanks, the first name in the internal list is returned. If
you set the dataset-var to a data set name, that data set name is
returned in dataset-var. If the LMDLIST service does not find the
named data set the next data set in the list is returned. Each time you
use the LMDLIST service with the LIST option it returns the next name
from the internal list until it reaches the end of data. The LMDLIST
service only includes the data set names meeting the criteria you
specify at the time you invoke the LMDINIT service.

FREE The FREE option releases the storage associated with the data set list.
Each use of the LMDLIST service with the LIST option must eventually
be followed by the LMDLIST service with the FREE option.

SAVE The SAVE option writes all data set names associated with the dslist ID
to a data set. The name of the data set is determined by the presence
and value of the group parameter. You cannot use the SAVE option
after the use of the LIST option without first invoking the LMDLIST
FREE option.

LMDLIST

Chapter 2. Description of ISPF Services 113



dataset-var
The LMDLIST service uses this variable to establish a position in the list. To
start at the beginning of the list set the dataset-var to blanks. To start at a
specific data set in the list set the dataset-var to the name of the data set. If the
LMDLIST service does not find the data set you specify, it returns the next
data set in the list.

YES|NO
Use the STATS parameter with the LMDLIST service LIST and SAVE options.
The default is STATS(NO). If you specify STATS(YES) the LMDLIST service
provides statistical information with the data set names in the following dialog
variables in the function pool:

ZDLVOL Volume serial.
ZDLDEV Device type.
ZDLDSORG Data set organization.
ZDLRECFM Record format.
ZDLLRECL Logical record length.
ZDLBLKSZ Block size.
ZDLSIZE Data set size in tracks.
ZDLUSED Percentage of used tracks or pages (PDSE).
ZDLEXT Number of extents used.
ZDLCDATE Creation date.
ZDLEDATE Expiration date.
ZDLRDATE Date last referenced.
ZDLMIGR Whether the data set is migrated (‘YES’ or

‘NO’) based on the value of the
Volume_of_migrated_data_sets keyword in
ISPF configuration table. If the volume name
of the data set matches the value of
Volume_of_migrated_data_sets, ZDLMIGR is
set to ‘YES’, otherwise it is set to ‘NO’.

ZDLDSNTP Dsname type (‘PDS’, ‘LIBRARY’, or ‘ ’).
ZDLSPACU Space units.
ZUDMVOL Whether the data set is multivolume (Y) or

not (N).

group
This 8-character value specifies the group name of the data set that the
LMDLIST service writes to when you use the SAVE option. The entire name of
the data set name is '<userid>.<group>.DATASETS' if your userid and TSO data
set name are the same, otherwise it is '<prefix>.<userid>.<group>.DATASETS'.
If you do not specify a group name, the LMDLIST service writes to the ISPF
list data set.

Note: LMDLIST service allocates the output data set with a DISP=OLD for the
SAVE option.

Return Codes
The following return codes are possible:

0 One of the following:
v LIST option - Normal completion. The name of next data set in the list is

returned in the variable specified in keyword DATASET. Data set
statistics are returned, if requested.

LMDLIST

114 z/OS V1R2.0 ISPF Services Guide



v FREE option - Normal completion. The internal storage associated with
the data set list has been freed.

v SAVE option - Normal completion. The data set list has been
successfully written to a data set.

4 No data sets matched specified search criteria (the values for keywords
LEVEL and VOLUME on the LMDINIT service).

8 End of data set list.

10 The data set list does not exist for dslist ID.

12 A keyword value is incorrect.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
In this example the LMDLIST service LIST option generates a list of all data set
names. The variable ID contains a dslist ID generated by the LMDINIT service.
The LMDLIST service places the first name in the variable DSNAME.

Command Invocation
SET &DSNAME =
ISPEXEC LMDLIST LISTID(&ID) STAT(YES) DATASET(DSNAME) OPTION(LIST)

Call Invocation
DSNAME = ' ';
CALL ISPLINK ('LMDLIST ', ID,'LIST ',DSNAME,'YES ');
OR

Set the program variable BUFFER to contain:
DSNAME = ' ';
BUFFER = 'LMDLIST LISTID(&ID) OPTION(LIST) DATASET(DSNAME)

STAT(YES)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMERASE – Erase a Data Set
The LMERASE service deletes an entire ISPF library oran MVS partitioned data set.
All members of the data set are deleted and all statistics are erased. The data set
name used must be the cataloged name, not an alias data set name.

Command Invocation Format
ISPEXEC LMERASE {[PROJECT(project)]

[GROUP(group)]

[TYPE(type)] }

[PURGE(YES|NO)]

[DATASET(dataset)]

[VOLUME(volume)]

[PASSWORD(password)]

LMDLIST

Chapter 2. Description of ISPF Services 115



Call Invocation Format
CALL ISPLINK('LMERASE ',[project]

,[group]

,[type]

,['YES '|'NO ']

,[dataset]

,[volume]

,[password]);

OR

CALL ISPEXEC (buf-len, buffer);

You must specify the data set (ISPF library, or MVS partitioned or sequential data
set) as a three-level qualified name, or as a 44 character data set name string. If
both are specified, ISPF will use the data set name string. If neither is specified, an
error message is displayed.

Parameters
project

The highest-level qualifier in the specification of an ISPF library or of an MVS
data set with a three-level qualified data set name. The maximum length of
this parameter is 8 characters.

group
The second-level qualifier in the specification of an ISPF library or of an MVS
data set with a three-level qualified data set name. The maximum length of
this parameter is 8 characters.

type
The third-level qualifier in the specification of an ISPF library or of an MVS
data set with a three-level qualified data set name. The maximum length of
this parameter is 8 characters.

YES|NO
If YES is specified, LMERASE deletes the data set regardless of its expiration
date. If NO (the default) is specified, LMERASE deletes the data set only if its
expiration date has passed.

dataset
The name of an existing MVS partitioned or sequential data set. A member
name or pattern cannot be included if the name is that of a partitioned data
set. The maximum length of this parameter is 46 characters, with 2 characters
for a beginning and ending single quotation mark, and 44 characters for the
data set name. If the single quotation marks are omitted, the users data set
prefix from the TSO profile is automatically appended to the front of the data
set name.

volume
The serial number of the DASD volume on which the data set resides. This
parameter is associated with the dataset parameter above, but is required only
if the data set is not cataloged. If the volume parameter is specified but the
dataset parameter is not, the volume is ignored. The maximum length of this
parameter is 6 characters.

LMERASE

116 z/OS V1R2.0 ISPF Services Guide



password
The MVS password of the data set. This parameter is required only if the data
set is password-protected. Do not specify a password for RACF- or
PCF-protected data sets. The maximum length of this password is 8 characters.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal completion.

8 One of the following:
v Data set is not cataloged or other allocation failure.
v Data set delete failed.
v Data set name is an alias.
v Expiration date not expired and PURGE parameter omitted
v No data set specified as input
v PROJECT specified, but GROUP or TYPE not specified.

12 Expiration date not expired and PURGE(NO) specified.

20 Severe error; unable to continue.

Example
This example invokes LMERASE to delete a data set with a three-level qualified
data set name that has DEPT877 as its highest-level qualifier, PRIVATE as its
second-level qualifier, and CLIST as its third-level qualifier.

Command Invocation
ISPEXEC LMERASE PROJECT(DEPT877) +

GROUP(PRIVATE) +
TYPE(CLIST) +
PURGE(YES)

Call Invocation
CALL ISPLINK('LMERASE ','DEPT877 ',

'PRIVATE ',
'CLIST ',
'YES ');

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMERASE PROJECT(DEPT877)

GROUP(PRIVATE)
TYPE(CLIST)
PURGE(YES)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMERASE

Chapter 2. Description of ISPF Services 117



LMFREE – Free Data Set from its Association with Data ID
The LMFREE service removes a data ID that was generated by the LMINIT service.
The ISPF library, concatenated ISPF libraries, or data set is no longer associated
with the specified data ID. If the data set is still open, LMFREE closes it.

After LMFREE is invoked, that data ID can no longer be used to identify the data
set for processing by other ISPF services that require data IDs. If the data ID is not
allocated by using the DDNAME parameter in LMINIT, the allocation for the data
set is also freed. If the data ID represents a concatenated set of ISPF libraries, the
data sets are freed and are no longer concatenated.

For each LMINIT invocation, you should invoke a matching LMFREE service. You
should invoke the LMFREE service when the data ID is no longer needed.
Otherwise, the ISPF library or data set associated with the data ID is not released
until ISPF terminates.

If you modify the data sets associated with a data ID, then you must invoke the
LMFREE and LMINIT services for the data ID before processing the data sets with
another service. Failure to update the directory blocks associated with the data ID
may cause I/O errors.

Command Invocation Format
ISPEXEC LMFREE DATAID(data-id)

Call Invocation Format
CALL ISPLINK('LMFREE ',data-id);
OR

CALL ISPEXEC (buf-len, buffer);

Parameters
data-id

The data ID associated with the data set to be released. The data ID has been
generated by the LMINIT service. The maximum length of this parameter is 8
characters.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Free data ID failed; the error condition is described in “System Variables
Used to Format Error Messages” on page 14.

10 No ISPF library or data set is associated with the given data ID; that is,
LMINIT has not been completed.

LMFREE

118 z/OS V1R2.0 ISPF Services Guide



20 Severe error; unable to continue.

Example
This example invokes the LMFREE service to release the data set associated with
the data ID in variable DDVAR.

Command Invocation
ISPEXEC LMFREE DATAID(&DDVAR)

Call Invocation
CALL ISPLINK('LMFREE ',DDVAR);
OR

Set the program variable BUFFER to contain:
BUFFER = 'LMFREE DATAID(&DDVAR)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMGET – Read a Logical Record from a Data Set
The LMGET service reads one logical record from the data set associated with the
given data ID. Completion of the LMINIT and LMOPEN services for the data set is
required before LMGET is invoked.

If the data to be processed is a sequential data set, the first LMGET reads the first
logical record. Later invocations read successive logical records; that is, the second
invocation reads the second logical record, the third invocation reads the third
logical record, and so on.

If the data is an ISPF library or MVS partitioned data set, previous completion of
the LMMFIND service is required in addition to completion of LMINIT and
LMOPEN. The LMGET service reads from the last member referred to by the
LMMFIND service in the data sets being processed. Thus, if LMMFIND is issued
referencing member A, LMGET reads from member A. If another LMMFIND is
issued referencing member B, LMGET reads from member B, not member A.

The data read is always unpacked. If the data set contains packed data, LMGET
unpacks the data.

Command Invocation Format
ISPEXEC LMGET DATAID(data-id)

MODE(MOVE|LOCATE|INVAR)

DATALOC(dataloc-var)

DATALEN(datalen-var)

MAXLEN(max-length)

Call Invocation Format
CALL ISPLINK ('LMGET ',data-id

,'MOVE '|'LOCATE '|'INVAR '

LMFREE

Chapter 2. Description of ISPF Services 119



,dataloc-var

,datalen-var

,max-length);

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
data-id

The data ID associated with the data set to be read. The data ID has been
generated by the LMINIT service. The maximum length of this parameter is 8
characters.

MOVE|LOCATE|INVAR
Whether the data is to be moved, located, or stored into an ISPF dialog
variable. A calling program function can specify any mode, with information
being passed through the data location variable. A command dialog can use
only INVAR mode, with data being returned to the command in the data
location variable.

dataloc-var
The name of the data location variable. In MOVE mode, the variable contains a
binary virtual storage address at which the data read by LMGET is to be
stored. In LOCATE mode, the address of the data read by LMGET is placed in
the data location variable. In INVAR mode, the data read by LMGET is itself
placed in the data location variable. The maximum length of this parameter is
8 characters.

datalen-var
The name of the variable into which LMGET stores the actual length of the
record read. The maximum length of this parameter is 8 characters.

max-length
A fullword binary integer containing the maximum record length to be read in
bytes. This parameter must be a non-zero positive integer value. In MOVE
mode, the value is the maximum number of bytes of data to be moved. In
INVAR mode, the value is the maximum number of bytes of data to be stored
in the data location variable. The value is not changed by LMGET in either
mode. The parameter is ignored in LOCATE mode.If the max-length
specification causes a DBCS character string to be divided in the middle, the
result may be unpredictable.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal completion.

LMGET

120 z/OS V1R2.0 ISPF Services Guide



8 End-of-data set condition; no message formatted.

10 No ISPF library or data set associated with the given data ID; that is,
LMINIT has not been completed.

12 One of the following:
v The data set is not open or is not open for input.
v An LMMFIND was not done for a partitioned data set.
v The parameter value is invalid.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the LMGET service to read a record from the data set
associated with the data ID in variable DDVAR, in INVAR mode, with LOCVAR as
the data location variable, LENVAR as the actual record length variable, and 80
bytes as the maximum record length.

Command Invocation
ISPEXEC LMGET DATAID(&DDVAR) MODE(INVAR) DATALOC(LOCVAR) +

DATALEN(LENVAR) MAXLEN(80)

Call Invocation
MAXLEN=80;
CALL ISPLINK('LMGET ',DDVAR,'INVAR ','LOCVAR ','LENVAR ',MAXLEN);

MAXLEN is a fullword integer variable.

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMGET DATAID(&DDVAR) MODE(INVAR) DATALOC(LOCVAR)

DATALEN(LENVAR) MAXLEN(80)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMINIT – Generate a Data ID for a Data Set
The LMINIT service allows the dialog to associate a data ID with a specified ISPF
library, concatenation of ISPF libraries or MVS partitioned data sets, or an MVS
partitioned or sequential data set. The data ID is generated by LMINIT and can be
used to identify the data set for processing by other library access services or the
BROWSE or EDIT service. If the specified data set exists but has not been
allocated, the LMINIT service allocates the data set. If two or more existing ISPF
libraries are specified, the LMINIT service concatenates the libraries.

Note: The LMINIT service does not support data sets created by a method that
does not set the format one DSCB field (DS1DSORG).

The input to the LMINIT service defines the physical and logical characteristics of
the data set. This simplifies the invocation of the other library access services by
supplying the information needed to invoke the service for a given data set. For
instance, the dialog supplies the information required by the input fields on the

LMGET

Chapter 2. Description of ISPF Services 121



ISPF View Entry Panel to LMINIT. Later invocations of the BROWSE service with
that data set are made much simpler by using the data ID generated by the
LMINIT service.

The LMINIT service must be completed before LMOPEN can be used. Otherwise,
the data set cannot be opened for processing. If LMINIT is issued with an enqueue
(ENQ) of SHRW and LMOPEN is issued with the OUTPUT option, it is essential
that an LMCLOSE is issued when the dialog has finished processing the data set,
since the DASD volume is reserved until LMCLOSE is invoked.

You can use the LMQUERY service to find out how the LMINIT parameters are
set.

For each LMINIT invocation, you should invoke a matching LMFREE service. The
LMFREE service removes the data ID generated by LMINIT. You should invoke the
LMFREE service when the data ID is no longer needed. Otherwise, the ISPF library
or data set associated with the data ID is not released until ISPF terminates.

If you modify the data sets associated with a data ID, then you must invoke the
LMFREE and LMINIT services for the data ID before processing the data sets with
another service. Failure to update the directory blocks associated with the data ID
may cause I/O errors.

For example, if you use a service like LMCOPY or LMMOVE to modify a data ID
that was defined by the LMINIT service, and the modified resource is needed for
other services, then the data ID that references the modified resource must first be
freed with LMFREE, then re-allocated with LMINIT. In more specific terms, say
you perform an LMMOVE operation to move data from DATA-ID(A) to
DATA-ID(B). Then you immediately use the LMMOVE service to move data from
DATA-ID(B) to DATA-ID(C). The second operation (from B to C) might result in an
I/O error. To correctly complete this task, make all updates to DATA-ID(B), free
DATA-ID(B) with the LMFREE service, then use the LMINIT service for
DATA-ID(B) so that the changes made to DATA-ID(B) can be referenced by other
services. Any time this initialization is not done on a modified resource and
references to that resource are made, an I/O error might occur.

Command Invocation Format
ISPEXEC LMINIT DATAID(data-id-var)

{PROJECT(project) GROUP1(group1) TYPE(type)
[GROUP2(group2)] [GROUP3(group3)] [GROUP4(group4)]}

{DATASET(dsname) }

{DDNAME(ddname) }

[VOLUME(serial)] [PASSWORD(password)]

[ENQ(SHR|EXCLU|SHRW|MOD)] [ORG(org-var)]

Call Invocation Format
CALL ISPLINK ('LMINIT ', data-id-var

{,project,group1 [,group2] [,group3] [,group4] ,type}

{,dsname }

{,ddname }

,[serial] ,[password]

LMINIT

122 z/OS V1R2.0 ISPF Services Guide



,['SHR '|'EXCLU '|'SHRW '|'MOD ']

,[org-var]);

OR

CALL ISPEXEC (buf-len,buffer);

You must specify the data set (ISPF library, or MVS partitioned or sequential data
set) as a ddname, a dsname, or a three-level qualified name. The search sequence
LMINIT uses is ddname, then dsname, then the three-level qualified name. If
LMINIT finds the name it is looking for, it uses that name. Otherwise, it looks for
the next type of name in the sequence. If there is no three-level qualified name,
LMINIT issues an error message.

Parameters
data-id-var

The name of the variable that will store the data ID to be associated with the
data set. The LMINIT service always generates a unique data ID. The data ID
is an input parameter to most of the other library access services, and
optionally to the BROWSE and EDIT services, but is an output parameter from
the LMINIT service. The data ID length is 8 characters. Therefore, the
maximum length of this parameter is 8 characters.

To invoke the service, you must specify the data ID variable name and an ISPF
library name (project, group, and type), a dsname, or a ddname. The ISPF
library name, dsname, and ddname are described below.

In the LMINIT service, data-id-var is the name of the variable that holds the
data ID (for example, DATAID(DDVAR)). When you use the data ID keyword
with other services, you must pass the value of the variable (for example,
DATAID(&DDVAR)). The Library search order is from the lowest (group1) to
highest (group4). The search for a member stops when the first matching
member name is located.

project
The highest-level qualifier in the specification of an ISPF library or MVS
three-level qualified data set. This parameter is required if neither the dsname
nor the ddname parameter is specified. The maximum length of this parameter
is 8 characters.

group1
The second-level qualifier in the specification of an ISPF library or MVS
three-level qualified data set. This parameter is required if neither the dsname
nor ddname parameter is specified. The maximum length of this parameter is 8
characters.

group2
Continues the second-level qualifier above. It is not required, but if present it
represents an ISPF library in a concatenation sequence. The maximum length
of this parameter is 8 characters.

group3
Continues the second-level qualifier above. It is not required, but if present it
represents an ISPF library in a concatenation sequence. The maximum length
of this parameter is 8 characters.

LMINIT

Chapter 2. Description of ISPF Services 123



group4
Continues the second-level qualifier above. It is not required, but if present it
represents an ISPF library in a concatenation sequence. The maximum length
of this parameter is 8 characters.

type
The third-level qualifier in the specification of an ISPF library or MVS
three-level qualified data set. This parameter is required if neither the dsname
nor the ddname parameter is specified. The maximum length of this parameter
is 8 characters.

dsname
The name of an existing MVS partitioned or sequential data set. A member
name or pattern cannot be included in the dsname of a partitioned data set.
The maximum length of this parameter is:
v For fully qualified data sets, 46 characters, with 2 characters for a beginning

and ending single quotation mark, and 44 characters for the data set name.
v If the single quotation marks are omitted, the user’s data set prefix from the

TSO profile is automatically appended to the front of the data set name. The
length of the data set name specified plus the length of the TSO prefix and
the separator ″.″ must not exceed 44 characters.

ddname
The data set definition name of a data set that is already allocated to the TSO
user before invocation of the LMINIT service. This can be done by using the
TSO ALLOCATE command or MVS job control language (JCL). The data set
must be either partitioned or sequential.

If the ddname is allocated to one or more partitioned data sets, member names
cannot be included. LMINIT allows up to 16 concatenated data sets.

Note: If the ddname is allocated to a multi-volume data set, LMINIT is not
supported. Do not try to LMINIT a multivolume data set by ddname.

Sequential data sets must be allocated as either OLD, SHR, NEW, or MOD. If
the ddname is allocated as NEW, the record format, data set organization,
record length, and block size must be specified when the ddname is allocated.
For a partitioned data set, the number of directory blocks must also be
specified when the ddname is allocated. The maximum length of this
parameter is 8 characters.

serial
The serial number of the DASD volume on which the data set resides. This
parameter is associated with the dsname parameter above, but is required only
if the data set is not cataloged. The maximum length of this parameter is 6
characters. Volume serial is associated with the dsname parameter and will be
ignored when the dsname is not entered.

password
The MVS password of the data set. This parameter is required only if the data
is password-protected. If the password is invalid, it is detected by the
LMOPEN service (see “LMOPEN – Open a Data Set” on page 162). Do not
specify a password for RACF- or PCF-protected data sets. The maximum
length of this parameter is 8 characters.

SHR|EXCLU|SHRW|MOD
The requirements for enqueuing (ENQ) the data within ISPF so that the dialog
can use it in the desired manner. This parameter is ignored if the ddname
parameter is specified.

LMINIT

124 z/OS V1R2.0 ISPF Services Guide



SHR shows that the existing data can be shared; for example, it can be used by
two or more users who want only to read the data. You can specify this option
when using the INPUT option of the LMOPEN service. SHR is the default.

EXCLU shows that exclusive use of the data is required; for example, when
you want to change the data no one else can have access to it. You can specify
this option for either the INPUT or OUTPUT option of the LMOPEN service.

SHRW permits a shared write for the data. This option is used by the PDF Edit.
It is used only for a partitioned data set. In this way, more than one user can
read from the data, but members can be rewritten when necessary through an
enqueue or dequeue used by Edit. Edit can now have the data ID open for
INPUT and OUTPUT at the same time. A data set that is allocated with an
enqueue of SHRW can be opened for either INPUT or OUTPUT using the
LMOPEN service.

MOD shows that more records are to be added to the end of a sequential data
set. MOD is used with the OUTPUT option of the LMOPEN service.

org-var
The name of the variable into which the organization of the data is stored. The
variable contains “PO” if the data set is partitioned or “PS” if it is physical
sequential. If you specify a concatenated set of ISPF libraries, the organization
of the first group of the concatenated libraries is returned. The maximum
length of this parameter is 8 characters.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Data ID not created; the error condition is described in “System Variables
Used to Format Error Messages” on page 14.

12 The parameter value is invalid.

16 Truncation or translation error in accessing dialog variables.

20 Severe error; unable to continue.

Refer to “System Variables Used to Format Error Messages” on page 14 for
more information on dialog variables.

Examples
This example invokes the LMINIT service to associate a data ID with data
concatenated from the following ISPF libraries:

ISPF.TESTLIB1.PLIOPT
ISPF.TESTLIB2.PLIOPT
ISPF.TESTLIB3.PLIOPT
ISPF.TESTLIB4.PLIOPT

Store the generated data ID in variable DDVAR.

LMINIT

Chapter 2. Description of ISPF Services 125



Command Invocation
ISPEXEC LMINIT DATAID(DDVAR) PROJECT(ISPF) +

GROUP1(TESTLIB1) +
GROUP2(TESTLIB2) GROUP3(TESTLIB3) +
GROUP4(TESTLIB4) TYPE(PLIOPT)

Call Invocation
DCL DDVAR CHAR (8);
CALL ISPLINK('VDEFINE ','DDVAR ',DDVAR,'CHAR ',

LENGTH(DDVAR));
CALL ISPLINK('LMINIT ','DDVAR ','ISPF ',

'TESTLIB1 ','TESTLIB2 ',
'TESTLIB3 ','TESTLIB4 ','PLIOPT ');

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMINIT DATAID(DDVAR) PROJECT(ISPF) GROUP1(TESTLIB1)

GROUP2(TESTLIB2) GROUP3(TESTLIB3)
GROUP4(TESTLIB4) TYPE(PLIOPT)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

The following example invokes the LMINIT service for a two-level dsname called
‘SMITH.CLIST’, using dsname.

Command Invocation
ISPEXEC LMINIT DATAID(DDVAR) +

DATASET('SMITH.CLIST') +
ENQ(SHR)

Call Invocation
CALL ISPLINK('LMINIT ','DDVAR ',

' ',' ',' ',' ',' ',' ',
'SMITH.CLIST',' ',
' ',' ','SHR ');

The following example invokes the LMINIT service for a new data set, using
ddname.

Command Invocation
ATTRIB MYLIST BLKSIZE(800) +

LRECL(80) RECFM(F B) +
DSORG(PS)

ALLOC DDNAME(MYDD) NEW +
SPACE(1,1) TRACKS KEEP +
USING(MYLIST)

ISPEXEC LMINIT DATAID(DDVAR) DDNAME(MYDD)

Call Invocation
For this invocation, assume DDNAME(MYDD) has been allocated to the user using
JCL.
CALL ISPLINK ('LMINIT ','DDVAR ',

' ',' ',' ',' ',' ',' ',
' ','MYDD ');

LMINIT

126 z/OS V1R2.0 ISPF Services Guide



LMMADD – Add a Member to a Data Set
The LMMADD service adds a member to the specified ISPF library or MVS
partitioned data set. LMMADD then updates the data set directory with
information about the member to be added. If the member already exists, the
member name entry is not added. The LMINIT with either ENQ(SHRW) or
ENQ(EXCLU), LMOPEN with OPTION(OUTPUT), and LMPUT services must be
completed before LMMADD is used.

Command Invocation Format
ISPEXEC LMMADD DATAID(data-id)

MEMBER(member-name)

[STATS(YES|NO)]

[NOENQ]

Call Invocation Format
CALL ISPLINK ('LMMADD ',data-id

,member-name

,['YES '|'NO '])

,['NOENQ']);

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
data-id

The data ID associated with the data set to which a member is being added.
The data ID has been generated by the LMINIT service. The maximum length
of this parameter is 8 characters.

member-name
The member name being added to the directory. The maximum length of this
parameter is 8 characters.

YES|NO
Whether the user data area in the directory should be updated so that the
statistics of the member are stored in the format used by the PDF Edit.

If you specify YES, and the data set is partitioned and does not have
unformatted records (RECFM=U), the directory is updated with the member
statistics. At least a valid creation date (ZLCDATE) and the date of last change
(ZLMDATE), as described below, must be provided in the member statistics.

If you specify NO (the default value), statistics are not updated.

The following dialog variables are used to pass statistical information from the
dialog invoking the LMMADD service:

ZLVERS
Version number; a number from 1 to 99. If no value exists for this
variable, ISPF will set the value to blanks.

LMMADD

Chapter 2. Description of ISPF Services 127



ZLMOD
Modification level; a number from 0 to 99.

ZLCDATE
Creation date; a character value shown in your national format. If no
value exists for this variable, the ISPF will set the value to blanks.

ZLMDATE
Last change date; a character value shown in your national format. If
no value exists for this variable, ISPF will set the value to blanks.

ZLMTIME
Last change time; a character value in the format hh:mm.ZLMTIME
may also be specified as an 8-character field in the format hh:mm:ss. If
the 6th character is not a colon, or if the 7th and 8th characters (ss) are
not in the range ’00’ to ’59’, only the hour:minute specifications are
used. The seconds value is set to the current time.

ZLMSEC
Seconds value of the last change time. This is a 2–character field.

Note: If the ZLMTIME variable does not contain a seconds value and
ZLMSEC is not set, the seconds value is set to 00. If both
ZLMTIME and ZLMSEC specify a seconds value, the value in
ZLMSEC is used.

ZLCNORC
Current number of records; a number from 0 to 65 535. If no value
exists for this variable, ISPF will set the value to blanks.

ZLINORC
Beginning number of records; a number from 0 to 65 535.

ZLMNORC
Number of changed records; a number from 0 to 65 535.

ZLUSER
User ID of the last user to change the given member; the user ID has a
maximum length of 7 characters.

ZLC4DATE
Creation date in 4 character year format; a character variable shown in
your national format. If no value exists for this variable, PDF sets the
value to blanks.

ZLM4DATE
Last modified date in 4 character year format; a character variable
shown in your national format. If no value exists for this variable, PDF
sets the value to blanks.

The preceding variables are stored in the function pool and therefore become
immediately available to command invocations. You cannot use the VGET
service to retrieve these variables, since the VGET service accesses the shared
and profile pools. Likewise, you cannot use the VPUT service to change these
variables.

NOENQ
An optional parameter that specifies that PDF should not issue it’s standard
ENQ during the processing of this service. This standard ENQ consists of a
major name of SPFEDIT and a minor name of the data set name and member.
PDF by default will issue the ENQ unless NOENQ is specified.

LMMADD

128 z/OS V1R2.0 ISPF Services Guide



buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal completion.

4 The directory already contains the specified name.

10 No ISPF library or MVS data set is associated with the given data ID; that
is, LMINIT has not been completed.

12 One of the following:
v The data set is not open or is not open for output.
v The parameter value is invalid.
v The data set organization is invalid.
v The values for some member statistics are invalid.

14 No record has been written for the member to be added.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the LMMADD service to add member MYPROG to the data
set associated with the data ID in variable DDVAR.

Command Invocation
ISPEXEC LMMADD DATAID(&DDVAR) MEMBER(MYPROG)

Call Invocation
CALL ISPLINK('LMMADD ',DDVAR,'MYPROG ');
OR

Set the program variable BUFFER to contain:
BUFFER = 'LMMADD DATAID(&DDVAR) MEMBER(MYPROG)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMMDEL – Delete a Member from a Data Set
The LMMDEL service removes the specified member from an ISPFlibrary or MVS
partitioned data set. All directory information associated with the member is
deleted. The LMINIT and LMOPEN services must be completed before you use the
LMMDEL service. The LMINIT must be done with either the ENQ(SHRW) or
ENQ(EXCLU) option, and the LMOPEN must have been done for OUTPUT.

LMMADD

Chapter 2. Description of ISPF Services 129



Command Invocation Format
ISPEXEC LMMDEL DATAID(data-id)

MEMBER(member-name)

[NOENQ]

Call Invocation Format
CALL ISPLINK('LMMDEL ',data-id

,member-name)

,['NOENQ']);

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
data-id

The data ID associated with the data set from which a member is to be
deleted. The data ID has been generated by the LMINIT service. The maximum
length of this parameter is 8 characters.

member-name
The name of the member to be deleted. The maximum length of this parameter
is 8 characters.

NOENQ
An optional parameter that specifies that PDF should not issue it’s standard
ENQ during the processing of this service. This standard ENQ consists of a
major name of SPFEDIT and a minor name of the data set name and member.
PDF by default will issue the ENQ unless NOENQ is specified.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal completion.

8 The member was not found.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of the following:
v The data set is not open or is not open for output.
v The parameter value is invalid.
v The data set organization is invalid.

20 Severe error; unable to continue.

LMMDEL

130 z/OS V1R2.0 ISPF Services Guide



Example
This example invokes the LMMDEL service to delete member MYPROG from the
data set associated with the data ID in variable DDVAR.

Command Invocation
ISPEXEC LMMDEL DATAID(&DDVAR) MEMBER(MYPROG)

Call Invocation
CALL ISPLINK('LMMDEL ',DDVAR,'MYPROG ');
OR

Set the program variable BUFFER to contain:
BUFFER = 'LMMDEL DATAID(&DDVAR) MEMBER(MYPROG)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMMDISP – Member List Service
LMMDISP provides a flexible and efficient way of performing many of the tedious
tasks associated with processing member lists. A member list is a list of members
from a single ISPF library, or concatenation of ISPF libraries or MVS partitioned
data sets associated with a data ID.

The dialog invoking LMMDISP must first issue a successful call to both LMINIT
and LMOPEN.

The LMMDISP service performs six member list functions for a dialog according to
the value specified in the OPTION parameter. The six values that can be specified
are:

Display
This option creates and displays a member list for the specifieddata ID. A
user can select members for processing from this member list by entering a
valid line command next to the member name or by using the SELECT
primary command. A member that does not exist on the member list can
also be selected by using the SELECT primary command. The first
member selected from this display is returned in ISPF dialog variables.

A non-existent member can only be selected if LMMDISP was invoked
with the ALLOWNEW parameter.

Get This option is used to return the second, and remaining selected members
from the most recent member list display. The GET option must be
invoked for each selected member that is to be returned. The GET option
can only return one selected member at a time.

Put This option saves information in the Line Command field, and the User
Data field of the member list.

Add This option adds a member to a member list.

Delete This option deletes a member from a member list.

Free This option frees the storage associated with a member list.

LMMDEL

Chapter 2. Description of ISPF Services 131



The description of each option, including format, parameters, return codes, and
examples, follows a discussion on dialog variables.

Note: Member lists generated by LMMLIST cannot be displayed by LMMDISP and
member lists generated by LMMDISP cannot be used with LMMLIST.
Member lists should be freed when switching between LMMLIST and
LMMDISP with the same data ID by using OPTION(FREE).

Dialog Variables
The following table contains variables that LMMDISP saves in the function pool
prior to returning a selected member to the dialog that invoked it. The “Returned”
column indicates when a given variable is returned. For example, “STATS(YES)”
indicates that the variable is returned only if the dialog invokes LMMDISP with
STATS(YES).

Variable Name Returned Variable Description

ZLMTOP always Member that appeared at the top of the
screen when the display ended.

ZLMEMBER always Member name of selected member.

ZLLCMD always Line command used to select the member.

ZLUDATA always User data area on member list.

ZLSIZE STATS(YES) 8–character field containing the load
module size in hex.

ZLTTR STATS(YES) 6–character field containing the TTR of the
member.

ZLALIAS STATS(YES) 8–character field containing the name of
the real member that this member is an
alias of.

ZLAC STATS(YES) 2–character field containing the
authorization code of the member.

ZLAMODE STATS(YES) 3–character field containing the AMODE
of the member.

ZLRMODE STATS(YES) 3–character field containing the RMODE
of the member.

ZLATTR STATS(YES) 20–character field containing the load
module attributes.

ZLLIB STATS(YES) Number from 1 to 4 representing position
of library in concatenation sequence.

ZLVERS STATS(YES) PDF version number.

ZLMOD STATS(YES) PDF modification number.

ZLCDATE STATS(YES) Member creation date.

ZLC4DATE STATS(YES) Member creation date, 4–digit year.

ZLMDATE STATS(YES) Date member was last modified.

ZLM4DATE STATS(YES) Date member was last modified, 4–digit
year.

ZLMTIME STATS(YES) Time member was last modified.

ZLMSEC STATS(YES) Seconds value of the last change time.

ZLCNORC STATS(YES) Current number of records.

ZLINORC STATS(YES) Initial number of records.

LMMDISP

132 z/OS V1R2.0 ISPF Services Guide



Variable Name Returned Variable Description

ZLMNORC STATS(YES) Number of modified records.

ZLUSER STATS(YES) System USERID of user to last modify
member.

ZSCLM STATS(YES) Indicates whether the system was last
modified by SCLM or PDF.

ZLPDSUDA 1 STATS(YES) Value of PDS directory user data area.

DISPLAY Option
The DISPLAY option creates a member list and displays it. You can specify a
customized panel, place the cursor, and have member list line commands
validated.

LMMDISP with OPTION(DISPLAY) must be the first invocation of LMMDISP with
a data ID once you have invoked LMINIT and LMOPEN with that data ID. This
creates a member list for the data ID and displays it. Subsequent calls with the
DISPLAY option simply display the member list again. Modification of parameters
MEMBER, COMMANDS, and FIELD are ignored after a member list has been
created until it is freed by an LMMDISP invocation with OPTION(FREE).

When the member list panel is displayed, you can select members for processing
by entering valid line commands next to the member names or by using the
SELECT primary command.

If a member or members were selected, LMMDISP returns the first or only selected
member in ISPF dialog variables. To retrieve the remaining selections, LMMDISP
with OPTION(GET) must be invoked for each selected member.

Command Invocation Format
ISPEXEC LMMDISP DATAID(data-id)

[OPTION(DISPLAY)]

[MEMBER(pattern)]

[STATS(YES|NO)]

[PANEL(panel-name)]

[CURSOR(ZCMD|ZLLCMD|ZLUDATA)]

[TOP(top-row)]

[COMMANDS(S|ANY)]

[FIELD(1|9)]
[ALLOWNEW]

Call Invocation Format
CALL ISPLINK('LMMDISP ', data-id

,['DISPLAY ']

,[pattern]

1. ZLPDSUDA is put in the ISPF function pool only if STATS(YES) was specified and the selected member being returned had
member statistics that did not conform to ISPF standards. For example, a load module member of a partitioned data set usually
has load module statistics, and not PDF statistics.

LMMDISP

Chapter 2. Description of ISPF Services 133



,['YES '|'NO ']

,[panel-name]

,['ZCMD '|'ZLLCMD '|'ZLUDATA ']

,[top-row]

,' '

,' '

,['S '|'ANY ']

,[1|9]
,['ALLOWNEW'];

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
data-id

The variable in which the data ID that uniquely identifies the data set is
stored.

DISPLAY
Indicates to LMMDISP that it is to create a member list if one does not exist
and display it.

pattern
The character string that is used to specify which members are to be displayed.
Refer to the ISPF User’s Guide for a more complete description of patterns and
pattern matching.

YES|NO
Indicates if LMMDISP is to return member statistics via dialog variables. Refer
to “Dialog Variables” on page 132 for a list of the dialog variables.

panel-name
The name of the panel on which the member list is to be displayed. Refer to
ISPF Planning and Customizing for requirements for customized panels. If this
option is omitted, the panel is ISRML000.

ZCMD|ZLLCMD|ZLUDATA
The name of the field on which the cursor is placed when the member list is
displayed. If ZLLCMD or ZLUDATA is specified, the cursor is placed on that
field of the first member to appear on the display.

top-row
The name that designates which member is to appear first on the display. If
the member cannot be found and the list is sorted by name, the member
immediately preceding the requested one in the member list is scrolled to the
top. If the list is not sorted by name and the member is not found, the list is
scrolled to the top.

S|ANY
S indicates that LMMDISP is to allow only S as a valid line command for
member selection. ANY indicates to LMMDISP that any character or character
string is a valid line command.

LMMDISP

134 z/OS V1R2.0 ISPF Services Guide



1|9
Indicates to LMMDISP the length of the Line Command field on the member
list display.

If 9 is specified and the data sets associated with the specified data ID have
formatted records, the Created field is left out of the member list display. If the
data sets do not have formatted records (RECFM=U), the Alias field is left out
of the member list display.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

ALLOWNEW
Indicates that non-existing members can also be selected. Omitting this
parameter causes only existing members to be selected.

Return Codes
The following return codes are possible:

0 One or more members were selected and/or a primary command not
recognized by LMMDISP was entered.

4 The requested data sets were empty, or no members matched the specified
pattern.

8 END or RETURN was entered.

10 No data set is associated with the given data ID; LMINIT has not been
completed.

12 Indicates one of the following conditions:
v Data set not open.
v Data set not partitioned.
v Invalid parameter value.
v Invalid data set organization.
v Invalid invocation syntax.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the DISPLAY option of the LMMDISP service to display the
data associated with the data ID in variable DDVAR.
ISPEXEC LMMDISP DATAID(&DDVAR) +

OPTION(DISPLAY) +
MEMBER(ISR*) +
STATS(YES) +
CURSOR(ZCMD) +
COMMANDS(S) +
FIELD(1)

Call Invocation:
CALL ISPLINK('LMMDISP ',

DDVAR,
'DISPLAY '
'ISR* ',
'YES ',
' ',

LMMDISP

Chapter 2. Description of ISPF Services 135



'ZCMD ',
' ',
' ',
' ',
'S ',
1);

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMMDISP DATAID(&DDVAR)

OPTION(DISPLAY)
MEMBER(ISR*)
STATS(YES)
CURSOR(ZCMD)
COMMANDS(S)
FIELD(1)';

Set the program variable BUFLEN to contain the length of the variable BUFFER.
Issue the following:
CALL ISPEXEC (BUFLEN,BUFFER);

GET Option
The GET option is used to return information about the second, and all other
selected members from the member list that was created during the last member
list display (LMMDISP with OPTION(DISPLAY)). One selected member is returned
in the ISPF dialog variables for each invocation of LMMDISP with the GET option.

Command Invocation Format
ISPEXEC LMMDISP DATAID(data-id)

OPTION(GET)
[STATS(YES|NO)]

Call Invocation Format
CALL ISPLINK('LMMDISP ', data-id

,'GET '

,' '

,['YES '|'NO ']);

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
data-id

Variable in which the data ID that uniquely identifies the data sets is stored.

GET
Indicates to LMMDISP that it is to return the next member and, optionally, the
member statistics.

YES|NO
Indicates whether LMMDISP is to return member statistics through dialog
variables to the dialog. See “Dialog Variables” on page 132 for a list of dialog
variables.

LMMDISP

136 z/OS V1R2.0 ISPF Services Guide



buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

Return Codes
0 Successful completion.

8 No more selected members.

10 No data set is associated with the given data ID; LMINIT has not been
completed.

12 Indicates one of the following conditions:
v Data set not open.
v Data set not partitioned.
v Invalid parameter value.
v Invalid data set organization.
v Invalid invocation syntax.
v Member list has not been created.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the GET option of the LMMDISP service to get the next
selected member of the member list of the data set associated with the data ID in
variable DDVAR.

Command Invocation:
ISPEXEC LMMDISP DATAID(&DDVAR) +

OPTION(GET) +
STATS(YES)

Call Invocation:
CALL ISPLINK ('LMMDISP ', DDVAR

,'GET '
,' '
,'YES ');

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMMDISP DATAID(&DDVAR)

OPTION(GET)
STATS(YES)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN,BUFFER);

PUT Option
The PUT option saves information in the Line Command field and User Data field
of a member in the member list. The User Data field is the field located between
the member name and the member statistics on the member list display panel.

LMMDISP

Chapter 2. Description of ISPF Services 137



Command Invocation Format
ISPEXEC LMMDISP DATAID(data-id)

OPTION(PUT)

MEMBER(member-name)

[ZLLCMD(lcmd-value)]

[ZLUDATA(udata-value)]

Call Invocation Format
CALL ISPLINK('LMMDISP ', data-id

,'PUT '

,member-name

,' '

,' '

,' '

,' '

,[lcmd-value]

,[udata-value]);

OR

CALL ISPEXEC (buf-len,buffer);

Parameters
data-id

Variable in which the data ID that uniquely identifies the data sets is stored.

PUT
Indicates to LMMDISP that it is to save member list information for the
member specified by member-name parameter.

member-name
The name of the member for which this information is being saved.

lcmd-value
Value to be stored in the Line Command field of member specified by
member-name. If it is longer than the line command area, it will be truncated,
though it must not exceed 9 characters. The length of this variable is the same
as the value of the specification of keyword FIELD on the first member list
display.

udata-value
Value to be stored in the User Data field of member specified by member-name.
The value must not exceed 8 characters, must not contain embedded blanks,
and will be converted to upper case.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

LMMDISP

138 z/OS V1R2.0 ISPF Services Guide



buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

Return Codes
0 Successful completion.

8 A specified member does not exist in the member list.

10 No data set is associated with the given data ID; LMINIT has not been
completed.

12 Indicates one of the following conditions:
v Data sets not open.
v Data sets not partitioned.
v Invalid parameter value.
v Invalid data set organization.
v Invalid invocation syntax.
v Member list has not been created.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the PUT option of the LMMDISP service to save information
in the member list associated with the data ID in variable DDVAR.

Command Invocation:
ISPEXEC LMMDISP DATAID(&DDVAR) +

OPTION(PUT) +
MEMBER(ISRFIRST) +
ZLUDATA(*RENAMED)

Call Invocation:
CALL ISPLINK('LMMDISP ', DDVAR,

'PUT ',
'ISRFIRST',
' ',
' ',
' ',
' ',
' ',
'*RENAMED');

OR

Set the program variable BUFFER to contain:
Buffer = 'LMMDISP DATAID(&DDVAR)

OPTION(PUT)
MEMBER(ISRFIRST)
ZLUDATA(*RENAMED)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN,BUFFER);

ADD Option
The ADD option adds a member to an existing member list. The member must not
exist in the member list and does not have to exist in the data set concatenation.

LMMDISP

Chapter 2. Description of ISPF Services 139



Command Invocation Format
ISPEXEC LMMDISP DATAID(data-id)

OPTION(ADD)

MEMBER(member-name)

[ZLLCMD(lcmd-value)]

[ZLUDATA(udata-value)]

Call Invocation Format
CALL ISPLINK('LMMDISP ', data-id

,'ADD '

,member-name

,' '

,' '

,' '

,' '

,[lcmd-value]

,[udata-value]);

OR

CALL ISPEXEC (buf-len,buffer);

Parameters
data-id

Variable in which the data ID that uniquely identifies the data sets is stored.

ADD
Indicates to LMMDISP that it is to add a member to the member list.

member-name
Name of member to add to the member list.

lcmd-value
The value to be stored in the Line Command field of the member specified by
member-name. If it is longer than the line command area, it will be truncated,
though it must not exceed 9 characters. The length of this variable is the same
as the value of the specification of keyword FIELD on the first member list
display.

udata-value
The value to be stored in the User Data field of the member specified by
member-name. The value must not exceed 8 characters, must not contain
embedded blanks, and will be converted to upper case.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

LMMDISP

140 z/OS V1R2.0 ISPF Services Guide



Return Codes
0 Successful completion.

8 The member already exists in the member list.

10 No data set is associated with the given data ID; LMINIT has not been
completed.

12 Indicates one of the following conditions:
v Data sets not open.
v Data sets not partitioned.
v Invalid parameter value.
v Invalid data set organization.
v Invalid invocation syntax.
v Member list has not been created.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the ADD option of the LMMDISP service to add a member
to the member list associated with the data ID in variable DDVAR.

Command Invocation:
ISPEXEC LMMDISP DATAID(&DDVAR) +

OPTION(ADD) +
MEMBER(NEWMEMB) +
ZLUDATA(*NEWMEMB)

Call Invocation:
CALL ISPLINK('LMMDISP ', DDVAR,

'ADD ',
'NEWMEMB ',
' ',
' ',
' ',
' ',
' ',
'*NEWMEMB');

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMMDISP DATAID(&DDVAR)

OPTION(ADD)
MEMBER(NEWMEMB)
ZLUDATA(*NEWMEMB)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN,BUFFER);

Delete Option
The DELETE option deletes a member from an existing member list. The member
must exist in the member list. The member is not deleted from the partitioned data
set in which it resides, only from the member list itself.

LMMDISP

Chapter 2. Description of ISPF Services 141



Command Invocation Format
ISPEXEC LMMDISP DATAID(data-id)

OPTION(DELETE)

MEMBER(member-name)

Call Invocation Format
CALL ISPLINK('LMMDISP ', data-id

,'DELETE '

,member-name
OR

CALL ISPEXEC (buf-len,buffer);

Parameters
data-id

Variable in which the data ID that uniquely identifies the data sets is stored.

DELETE
Indicates to LMMDISP that it is to delete a member from the member list.

member-name
Name of member to delete from the member list.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

Return Codes
0 Successful completion.

8 A specified member does not exist in the member list.

10 No data set is associated with the given data ID; LMINIT has not been
completed.

12 Indicates one of the following conditions:
v Data sets not open.
v Data sets not partitioned.
v Invalid parameter value.
v Invalid data set organization.
v Invalid invocation syntax.
v Member list has not been created.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the DELETE option of the LMMDISP service to delete a
member from the member list associated with the data ID in variable DDVAR.

Command Invocation:

LMMDISP

142 z/OS V1R2.0 ISPF Services Guide



ISPEXEC LMMDISP DATAID(&DDVAR) +
OPTION(DELETE) +
MEMBER(ISRFIRST)

Call Invocation:
CALL ISPLINK('LMMDISP ', DDVAR,

'DELETE ',
'ISRFIRST');

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMMDISP DATAID(&DDVAR)

OPTION(DELETE)
MEMBER(ISRFIRST)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN,BUFFER);

FREE Option
The FREE option frees the storage used by the member list.

Command Invocation Format
ISPEXEC LMMDISP DATAID(data-id)

OPTION(FREE)

Call Invocation Format
CALL ISPLINK('LMMDISP ', data-id

,'FREE ');

OR

CALL ISPEXEC (buf-len,buffer);

Parameters
data-id

Variable in which the data ID that uniquely identifies the data sets is stored.

FREE
Indicates to LMMDISP that it is to free the member list and associated storage.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

Return Codes
0 Successful completion.

8 No member list is associated with the given data ID.

10 No data set is associated with the given data ID; LMINIT has not been
completed.

LMMDISP

Chapter 2. Description of ISPF Services 143



12 Indicates one of the following conditions:
v Data sets not open.
v Data sets not partitioned.
v Invalid parameter value.
v Invalid data set organization.
v Invalid invocation syntax.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the FREE option of the LMMDISP service to free the storage
space used by the associated data ID in the variable DDVAR.

Command Invocation:
ISPEXEC LMMDISP DATAID(&DDVAR) +

OPTION(FREE)

Call Invocation:
CALL ISPLINK('LMMDISP ', DDVAR

,'FREE ');
OR

Set the program variable BUFFER to contain:
BUFFER = 'LMMDISP DATAID(&DDVAR)

OPTION(FREE)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN,BUFFER);

LMMFIND – Find a Library Member
The LMMFIND service finds a specified member of an ISPFlibrary or partitioned
data set associated with a given data ID. You can also use LMMFIND to return
member statistics to you. If the data ID represents a concatenated set of ISPF
libraries, LMMFIND finds the first occurrence of the member in the set of libraries.

The LMINIT and LMOPEN services must be completed before LMMFIND can be
used.

Command Invocation Format
ISPEXEC LMMFIND DATAID(data-id)

MEMBER(member-name)

[LOCK]

[LRECL(lrecl-var)]

[RECFM(recfm-var)]

[GROUP(group-var)]

[STATS(YES|NO)]

LMMDISP

144 z/OS V1R2.0 ISPF Services Guide



Call Invocation Format
CALL ISPLINK ('LMMFIND ',data-id

,member-name

,['LOCK ']

,[lrecl-var]

,[recfm-var]

,[group-var]

,['YES '|'NO ']);

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
data-id

The data ID associated with the data set to be searched. The data ID is
generated by the LMINIT service. The maximum length of this parameter is 8
characters.

member-name
The name of the member to be found. The maximum length of this parameter
is 8 characters.

LOCK
The LOCK parameter is no longer used since the removal of IMF from the
ISPF product, but is left in for compatibility. IF LOCK is specified, the
LMMFIND service will fail with return code 12. If you want to be able to
specify YES and have LMMFIND ignore the value, change the
FAIL_ON_LMF_LOCK keyword value in the ISPF Configuration Table to NO.

The LMMFIND service is being used to find a member in an LMF-controlled
ISPF library to either update it or prevent others from updating it. This
parameter is valid only if the data set is an ISPF library or a concatenated set
of ISPF libraries. The library management facility control data set must have
been allocated under the ddname ISRCFIL. For more information about the
LOCK parameter, refer to ISPF Library Management Facility

lrecl-var
The name of the variable into which the data record length (or, if the record
format is of variable length, the maximum data record length) is to be stored.
The maximum length of this parameter is 8 characters.

recfm-var
The name of the variable into which the record format code is to be stored. An
example is FB for fixed-length block data. The maximum length of this
parameter is 8 characters.

group-var
The name of the variable that will store the name of the group that contains
the found member. This variable contains the group name after the service is
executed only if the data is an ISPF library or a set of concatenated ISPF
libraries and LMINIT is used with ISPF name parameters; otherwise, the
variable is set to null. The maximum length of this parameter is 8 characters.

LMMFIND

Chapter 2. Description of ISPF Services 145

|
|
|
|
|

|
|
|
|
|
|



YES|NO

Whether statistics for the member are to be returned to the dialog invoking the
service. If you specify NO (the default value), no statistics are returned. If you
specify YES and the data ID represents a data set that has unformatted records
(RECFM=U), the statistics are returned in the following dialog variables:

ZLLIB Position in concatenated data set sequence; a number from 1 to 4.

ZLSIZE
An 8–character field containing the load module size in hex.

ZLTTR
A 6–character field containing the TTR of the member.

ZLALIAS
An 8–character field containing the name of the real member that this
member is an alias of. If the member is not an alias this field is blank.

ZLAC A 2–character field containing the authorization code of the member.

ZLAMODE
A 3–character field containing the AMODE of the member.

ZLRMODE
A 3–character field containing the RMODE of the member.

ZLATTR
A 20–character field containing the load module attributes. The
attributes are 2–character strings separated by blanks. The following
strings can appear in the attribute string:

NX Not executable

OL Only Loadable

OV Overlay

RU Reusable

RN Reentrant

RF Refreshable

SC Scatter Load

TS Test

For other record formats (F or V), the statistics are returned in the following
dialog variables:

ZLLIB Position in concatenated data set sequence; a number from 1 to 4.

ZLVERS
Version number; a number from 1 to 99. If no value exists for this
variable, ISPF will set the value to blanks.

ZLMOD
Modification level; a number from 0 to 99.

ZLCDATE
Creation date; a character value shown in your national format. If no
value exists for this variable, ISPF will set the value to blanks.

LMMFIND

146 z/OS V1R2.0 ISPF Services Guide



ZLC4DATE
Creation date in 4-character year format; a character value shown in
your national format. If no value exists for this variable, PDF will set
the value to blanks.

ZLMDATE
Last change date; a character value shown in your national format. If
no value exists for this variable, ISPF will set the value to blanks.

ZLM4DATE
Last change date in 4-character year format; a character value shown in
your national format. If no value exists for this variable, PDF will set
the value to blanks.

ZLMTIME
Last change time; a character value in the format hh:mm.

ZLMSEC
Seconds value of the last change time. This is a two character field.

ZLCNORC
Current number of records; a number from 0 to 65 535. If no value
exists for this variable, ISPF will set the value to blanks.

ZLINORC
Beginning number of records; a number from 0 to 65 535.

ZLMNORC
Number of changed records; a number from 0 to 65 535.

ZLUSER
User ID of last user to change the given member; an alphanumeric
field with a maximum length of 7 characters.

ZSCLM
Indicates whether the member was last modified by SCLM or PDF. A
value of Y indicates the last update was made through SCLM. A value
of N indicates that the last update was made through PDF.

The preceding variables are stored in the function pool and therefore become
immediately available to command invocations. You cannot use the VGET
service to retrieve these variables, since VGET accesses the shared and profile
pools.

For an MVS partitioned data set, if the statistics are not stored in the data set
directory in the same format used by Edit, only ZLLIB is set with the position
in the concatenation.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Member not found.

LMMFIND

Chapter 2. Description of ISPF Services 147



10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of the following:
v Data set is not open or is not open for input.
v A parameter value is invalid.
v Data set is not partitioned.
v LOCK parameter was specified.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example:
v Invokes the LMMFIND service to find member MYPROG in the data set

associated with the data ID stored in DDVAR.
v Stores the record length in variable LENVAR, the record format code in

FORMVAR, and the name of the group that contains member MYPROG in
GRPVAR.

Command Invocation
ISPEXEC LMMFIND DATAID(&DDVAR) MEMBER(MYPROG) +

LRECL(LENVAR) RECFM(FORMVAR) +
GROUP(GRPVAR)

Call Invocation
CALL ISPLINK ('LMMFIND ',DDVAR,'MYPROG ',' ',

'LENVAR ','FORMVAR ','GRPVAR ');
OR

Set the program variable BUFFER to contain:
BUFFER = 'LMMFIND DATAID(&DDVAR) MEMBER(MYPROG)

LRECL(LENVAR) RECFM(FORMVAR)
GROUP(GRPVAR)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMMLIST – List a Library’s Members
The LMMLIST service, when used with the LIST or SAVE option, creates a list of
the first occurrence of all the members in an ISPF library, a concatenated set of
ISPF libraries, or an MVS partitioned data set associated with the given data ID.

When you invoke LMMLIST for the first time with the LIST option, the MEMBER
variable determines the starting position within the member list. To position at the
beginning, set the MEMBER variable to blanks. If the requested member is not
found, the next member in the member list is returned. The member list is sorted
by member name. Repeated innvocation of LMMLIST provides access to each
member name in the member list.

Use LMMLIST with the SAVE option to write a list of member names to a data set.
If a MEMBER variable is non-blank, the member name you specify will be the first
member in the list.

LMMFIND

148 z/OS V1R2.0 ISPF Services Guide

|



You must complete the LMINIT and LMOPEN services before using LMMLIST.
Use the LMMLIST FREE option to release the list storage space when it is not
needed.

Note: Member lists generated by LMMLIST cannot be displayed by LMMDISP,
and member lists generated by LMMDISP cannot be used with LMMLIST.
Member lists should be freed when switching between LMMLIST and
LMMDISP with the same data ID.

Command Invocation Format
ISPEXEC LMMLIST DATAID(data-id)

[OPTION(LIST|FREE|SAVE)]

[MEMBER(member-var)]

[STATS(YES|NO)]

[GROUP(group)]

[PATTERN(member-pattern)]

Call Invocation Format
CALL ISPLINK ('LMMLIST ',data-id

,['LIST '|'FREE '|'SAVE ']

,[member-var]

,['YES '|'NO ']

,[group]

,[member-pattern]);

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
data-id

The data ID associated with the ISPF library, concatenated group of ISPF
libraries, or MVS partitioned data set for which the member list is to be
created. The data ID has been generated by the LMINIT service. The maximum
length of this parameter is 8 characters.

LIST|FREE|SAVE
These options determine the action performed by the LMMLIST service.

LIST The first time that you invoke the LMMLIST service with the LIST
option (the default value), it creates a member list for use by a dialog.

If member-var is initialized to blanks, the first name in the member list
is returned. If member-var is set to a member name for a starting
position within the member list, that member name is returned in
member-var. If the member is not found, the next member in the
member list is returned. If you request statistics information for the
member, the statistics are returned.

LMMLIST

Chapter 2. Description of ISPF Services 149



Later invocations of LMMLIST with the LIST option return succeeding
member names and their statistics, if requested, until the end of the list
is reached, as indicated by return code. At this point, the dialog should
invoke LMMLIST with the FREE option.

FREE The FREE option specifies that the storage acquired to create the
member list is to be freed. Each creation of a member list should be
matched by an invocation of LMMLIST with the FREE option.

SAVE The SAVE option writes all member names in a list specified by the
data ID to a data set. The name of the data set is determined by the
presence and value of the GROUP parameter.

member-var
The name of the variable into which the name of the member used for
positioning in the member list is specified, or the name of the next member in
the list is to be stored. The maximum length of this parameter is 8 characters.

When you invoke LMMLIST for the first time, member-var is used for
selecting a starting position within the member list. If the member is found,
that member name is returned in member-var. If the requested member is not
found, the next member in the member list is returned. To start at the
beginning of the list, set member-var to blanks.

The member-var parameter serves the same purpose for the SAVE option as it
does for the LIST option. When LMMLIST is used with OPTION (SAVE), a list
of member names is written to a data set. If member-var is non-blank, the
member name you specify is the first member in the list.

YES|NO
The STATS parameter can only be used with the LIST and SAVE options. The
default is STATS(NO). If you specify STATS(YES) the LMMLIST service
provides member statistics with the member names. This parameter is fully
described under “LMMFIND – Find a Library Member” on page 144.

group
This 8-character value specifies the group name of the data set that the
LMMLIST service writes the member names list with the SAVE option. The
entire data set name is <prefix>.<group>.MEMBERS. If you do not specify a
group name the LMMLIST service writes to the ISPF LIST data set.

Note: LMMLIST service allocates the output data set with a DISP=OLD for the
SAVE option.

member-pattern
The character string that is used to specify which members are to be returned.
See the ISPF User’s Guide for a more complete description of patterns and
pattern matching.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 One of the following:

LMMLIST

150 z/OS V1R2.0 ISPF Services Guide



v LIST option - Normal completion. The member list is available and the
next member in the list is returned in the member-var parameter.

v FREE option - Normal completion. The member list is freed successfully.
v SAVE option - Normal completion. The member list is successfully

written to a data set.

4 Empty member list.

8 One of the following:
v LIST option - End of member list.
v FREE option - Member list does not exist.
v SAVE option - For a data ID, the LMMLIST service has been invoked

with the SAVE option after being invoked with LIST option, but before
being invoked with the FREE option.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of the following:
v The data set is not open or is not partitioned.
v A parameter value is invalid.
v Member list was created using LMMDISP.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the LMMLIST service with the LIST option to create a
member list of the data set associated with the data ID in variable DDVAR and to
return the first member namein the list in variable MEMVAR.

Command Invocation
In this example, the LMMLIST service LIST option creates a member list of the
data set associated with the data ID in variable DDVAR and returns the first
member name in the list to variable MEMVAR.
SET &MEMVAR =
ISPEXEC LMMLIST DATAID(&DDVAR) OPTION(LIST) +

MEMBER(MEMVAR)

Call Invocation
MEMVAR = ' ';
CALL ISPLINK ('LMMLIST ',DDVAR,'LIST ','MEMVAR ' );
OR

Set the program variable BUFFER to contain:
MEMVAR= ' ';
BUFFER = 'LMMLIST DATAID(&DDVAR) OPTION(LIST)

MEMBER(MEMVAR)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

In this example, the LMMLIST service SAVE option creates a member list, writes it
to the ISPF LIST data set, using the data ID stored in IDVAR.

LMMLIST

Chapter 2. Description of ISPF Services 151



Command Invocation
ISPEXEC LMMLIST DATAID(&IDVAR) STATS(YES) OPTION(SAVE)

Call Invocation
CALL ISPLINK ('LMMLIST ',IDVAR,'SAVE ',' ','YES ');
OR

Set the program variable BUFFER to contain:
BUFFER = 'LMMLIST DATAID(&IDVAR) STATS(YES) OPTION(SAVE)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMMOVE – Move Members of a Data Set
The LMMOVE service moves members of a partitioned dataset or an entire
sequential data set. Once the data has been moved, the “from” data set or
members are deleted. Packing data, replacing members, and automatic truncation
are optional. Only fixed and variable record format data sets can be packed.

Completion of the LMINIT service is required before you invoke LMMOVE. See
“LMINIT – Generate a Data ID for a Data Set” on page 121 for information that
can help prevent some common I/O errors that might occur when using the
LMCOPY service. LMMOVE requires that the “to data-id” be closed prior to
invocation. The “from data-id” must also be closed when moving sequential data
sets.

Notes:

1. FROMID and TODATAID can refer to the same data set but they cannot have
the same data-id.

2. LMCOPY does not support the copying of unmovable data sets (data set
organization POU or PSU).

3.

LMCOPY does not automatically process alias members unless one of the
following is true:
v all members of the data set are processed.
v a member pattern is used and both the main member and the alias member

are included in that pattern.

Copying an alias member by itself will result in a new member being created,
even if the main member has already been copied.

Command Invocation Format
ISPEXEC LMMOVE FROMID(from-data-id)

[FROMMEM(from-member-name)]

TODATAID(to-data-id)

[TOMEM(to-member-name)]

[REPLACE]

[PACK]

LMMLIST

152 z/OS V1R2.0 ISPF Services Guide

|
|

|

|
|

|
|



[TRUNC]

[SCLMSET(Y|N)]

Call Invocation Format
CALL ISPLINK ('LMMOVE ',from-data-id

,[from-member-name]

,to-data-id

,[to-member-name]

,['REPLACE ']

,['PACK ']

,['TRUNC ']

,['YES'|NO'|' ']);

OR

CALL ISPEXEC (buf-len,buffer);

Parameters
from-data-id

Specifies the data ID name associated with the data set to be moved. The data
ID has been generated by the LMINIT service. The maximum length of this
parameter is 8 characters.

from-member-name
The member name or pattern of the members to be moved. An asterisk (*)
indicates that all members are to be moved. If the “from” data set is
partitioned, this parameter is required. If it is sequential, this parameter is not
allowed. The maximum length of this parameter is 8 characters.

to-data-id
Specifies the data ID name associated with the data set being moved to. The
data ID has been generated by the LMINIT service. The maximum length of
this parameter is 8 characters.

to-member-name
The name of the member being moved to the “to” data set. If a name is not
specified, the name of the member in the “from” data set is used. If the “from”
data set is sequential and the “to” data set is partitioned, this parameter is
required. If the “to” data set is sequential, this parameter is not allowed. The
maximum length of this parameter is 8 characters.

REPLACE
Specifies whether like-named members in the “to” data set are to be replaced.
If “replace” is not specified and the members exists in the “to” data set, then
the move will not be performed and a return code of 20 is issued.

If a list of members is being moved and one cannot be replaced, processing
stops and a message is issued indicating how many members were moved.

LMMOVE

Chapter 2. Description of ISPF Services 153



PACK
Specifies whether data is stored in the “to” data set in packed format. If “pack”
is not specified, data is stored as it exists.

TRUNC
Specifies that truncation is to occur if the logical record length of the “to” data
set is less than the logical record length of the “from” data set. If truncation is
not specified and the logical record length of the “to” data set is less than the
logical record length of the “from” data set, the move is not performed and a
return code of 16 is issued.

SCLMSET
ISPF maintains a bit in the PDS directory to indicate whether a member was
last modified using SCLM or some function outside of SCLM. The SCLMSET
value indicates how to set this bit. YES indicates to set the bit ON. NO
indicates the bit should be OFF. If you want to keep the current setting for a
certain member, omit the SCLMSET parameter.

buf-len
Specifies a fullword fixed binary integer containing the length of buffer.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC invocation for a command
procedure.

Return Codes
0 Successful completion.

4 One of the following:
v “From” data set is empty.
v No member matched the pattern in the “from” data set.

8 “From” member not found.

10 No data set is associated with given data ID.

12 One of the following:
v A like-named member already exists in the “to” data set and the Replace

option was not specified.
v One or more members of the ’TO’ or ’FROM’ data sets are ″in use″ by

you or another user and could not be moved.
v Invalid data set organization.
v Data set attribute invalid for packed data.
v Open error.

16 A truncation error occurred.

20 Severe error; unable to continue.

Example
This example invokes the LMMOVE service to move member MYPROG in the
data set associated with the data ID in variable DDVAR to the data set associated
with the data ID in variable DDVAR2. If MYPROG already exists, replace it.

Command Invocation
ISPEXEC LMMOVE FROMID(&DDVAR) FROMMEM(MYPROG) +

TODATAID(&DDVAR2) REPLACE

LMMOVE

154 z/OS V1R2.0 ISPF Services Guide



Call Invocation
CALL ISPLINK('LMMOVE ',DDVAR,'MYPROG ',DDVAR2,' ','REPLACE ');
OR

Set the program variable BUFFER to contain:
BUFFER = 'LMMOVE FROMID(&DDVAR) FROMMEM(MYPROG)

TODATAID(&DDVAR2) REPLACE';

Set the program variable BUFLEN to the length of the variable BUFFER.

Issue the following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMMREN – Rename a Data Set Member
The LMMREN service updates the directory to rename a member ofa partitioned
data set. You can use this service with an ISPF library or an MVS partitioned data
set. The LMINIT service with either ENQ(SHRW) or ENQ(EXCLU) and the
LMOPEN service with OPTION(OUTPUT) must be completed before you can use
the LMMREN service.

Command Invocation Format
ISPEXEC LMMREN DATAID(data-id)

MEMBER(old-member-name)

NEWNAME(new-member-name)

[NOENQ]

Call Invocation Format
CALL ISPLINK('LMMREN ',data-id

,old-member-name

,new-member-name)

,['NOENQ']);

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
data-id

The data ID associated with the data set that contains the member being
renamed. The data ID has been generated by the LMINIT service. The
maximum length of this parameter is 8 characters.

old-member-name
The present name of the member. The maximum length of this parameter is 8
characters.

new-member-name
The new member name, which must follow TSO data set naming conventions.
The maximum length of this parameter is 8 characters.

LMMOVE

Chapter 2. Description of ISPF Services 155



NOENQ
An optional parameter that specifies that PDF should not issue it’s standard
ENQ during the processing of this service. This standard ENQ consists of a
major name of SPFEDIT and a minor name of the data set name and member.
PDF by default will issue the ENQ unless NOENQ is specified.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal completion.

4 Directory already contains the specified new name.

8 Member not found.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of the following:
v The data set is not open or is not open for output.
v The parameter value is invalid.
v The data set organization is invalid.

20 Severe error; unable to continue.

Example
This example invokes the LMMREN service to rename member MYPROG in the
data set associated with the data ID in variable DDVAR to MYPROGA.

Command Invocation
ISPEXEC LMMREN DATAID(&DDVAR) +

MEMBER(MYPROG) NEWNAME(MYPROGA)
[NOENQ]

Call Invocation
CALL ISPLINK('LMMREN ',DDVAR,'MYPROG ','MYPROGA ')

,['NOENQ']);

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMMREN DATAID(&DDVAR)

MEMBER(MYPROG) NEWNAME(MYPROGA)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMMREN

156 z/OS V1R2.0 ISPF Services Guide



LMMREP – Replace a Member of a Data Set
The LMMREP service updates the directory to replace a memberof a partitioned
data set. The specified member is added if it does not currently exist. This service
can be used with an ISPF library or an MVS partitioned data set. The LMINIT
service with either ENQ(SHRW) or ENQ(EXCLU), the LMOPEN service with
OPTION(OUTPUT), and the LMPUT service must be completed before you can
use the LMMREP service.

Command Invocation Format
ISPEXEC LMMREP DATAID(data-id)

MEMBER(member-name)

[STATS(YES|NO)]

[NOENQ]

Call Invocation Format
CALL ISPLINK('LMMREP ',data-id

,member-name

,['YES '|'NO '])

,['NOENQ ']);

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
data-id

The data ID associated with the data set that contains a member that is being
replaced. The data ID has been generated by the LMINIT service. The
maximum length of this parameter is 8 characters.

member-name
The name of the member to be replaced. The maximum length of this
parameter is 8 characters.

YES|NO
Whether the user data area in the directory should be updated so that the
statistics of the member are stored in the same format used by Edit.

If you type YES and the data set specified is partitioned and the records are
not unformatted (RECFM=U), the directory is updated with the member
statistics. At least a valid creation date (ZLCDATE) and the date of the most
recent change (ZLMDATE) must be provided in the member statistics.

If you specify NO, the default value, the statistics are not updated.

The following dialog variables are used to pass statistical information from the
dialog invoking the LMMREP service:

ZLVERS
Version number; a number from 1 to 99.

ZLMOD
Change level; a number from 0 to 99.

LMMREP

Chapter 2. Description of ISPF Services 157



ZLCDATE
Creation date; a character value shown in your national format.

ZLMDATE
Last change date; a character value shown in your national format.

ZLMTIME
Last change time; a character value in the format hh:mm. ZLMTIME
may also be specified as an 8-character field in the format hh:mm:ss. If
the 6th character is not a colon, or if the 7th and 8th characters (ss) are
not in the range ’00’ to ’59’, only the hour and minute specifications
are used. The seconds value is set to the current time.

ZLMSEC
Seconds value of the last change time. This is a 2–character field.

Note: If the ZLMTIME variable does not contain a seconds value and
ZLMSEC is not set, the seconds value is set to 00. If both
ZLMTIME and ZLMSEC specify a seconds value, the value in
ZLMSEC is used.

ZLCNORC
Current number of records; a number from 0 to 65 535.

ZLINORC
Beginning number of records; a number from 0 to 65 535.

ZLMNORC
Number of changed records; a number from 0 to 65 535.

ZLUSER
User ID of the last user to change the given member; the user ID can
have a maximum length of 7 characters.

NOENQ
An optional parameter that specifies that PDF should not issue it’s standard
ENQ during the processing of this service. This standard ENQ consists of a
major name of SPFEDIT and a minor name of the data set name and member.
PDF by default will issue the ENQ unless NOENQ is specified.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Member is added; it did not previously exist.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of the following:
v The data set is not open or is not open for output.
v The parameter value is invalid.
v The data set organization is invalid.

LMMREP

158 z/OS V1R2.0 ISPF Services Guide



v Some member statistics have invalid values.

14 No record has been written for the member to be replaced.

16 Truncation or translation error in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the LMMREP service to update the directory of the data set
associated with the data ID in variable DDVAR to replace member MYPROG.

Command Invocation
ISPEXEC LMMREP DATAID(&DDVAR) MEMBER(MYPROG)

Call Invocation
CALL ISPLINK('LMMREP ',DDVAR,'MYPROG ');
OR

Set the program variable BUFFER to contain:
BUFFER = 'LMMREP DATAID(&DDVAR) MEMBER(MYPROG)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMMSTATS – Set and Store, or Delete ISPF Statistics
The LMMSTATS service sets and stores, or deletes ISPF statistics for members of a
partitioned data set. This service can be used with ISPF libraries or an MVS
partitioned data set. Any and all statistics can be set, or all statistics can be deleted.
If no statistics exist, then LMMSTATS will calculate those not specified by
keyword. Only fixed- and variable-record format data sets are supported.
Completion of the LMINIT service is required before you invoke LMMSTATS. The
data set must not be opened for output.

Command Invocation Format
ISPEXEC LMMSTATS DATAID(data-id)

MEMBER(member-name)

[VERSION(version-number)]

[MODLEVEL(mod-level)]

[CREATED(create-date)]

[MODDATE(last-modified-date)]

[MODTIME(last-modified-time)]

[CURSIZE(current-size)]

[INITSIZE(initial-size)]

[MODRECS(records-modified)]

[USER(user-id)]

[DELETE]

LMMREP

Chapter 2. Description of ISPF Services 159



[CREATED4(4-char-year-create-date)]

[MODDATE4(4-char-year-last-modified-date)]

[SCLM(On|Off|Asis)]

Call Invocation Format
CALL ISPLINK ('LMMSTATS',data-id

,member-name

,[version-number]

,[mod-level]

,[create-date]

,[last-modified-date]

,[last-modified-time]

,[current-size]

,[initial-size]

,[records-modified]

,[user-id]

,['DELETE ']

,[4-char-year-create-date]

,[4-char-year-last-modified-date]

,[On|Off|Asis]);

OR

CALL ISPEXEC (buf-len,buffer);

Parameters
data-id

The data ID associated with the data set containing the members whose
statistics are being modified or deleted. The data ID has been generated by the
LMINIT service. The maximum length of this parameter is 8 characters.

member-name
Member name, or pattern representing the members whose statistics are to be
modified or deleted. A pattern may be specified to indicate a subset of
members all members. The maximum length of this parameter is 8 characters.

version-number
The number to be assigned as the version number. This parameter must be an
integer between 1 and 99, inclusive.

mod-level
The number of modifications or changes to the member. This parameter must
be an integer between 0 and 99, inclusive.

LMMSTATS

160 z/OS V1R2.0 ISPF Services Guide



create-date
The date the member was created. The format of the date is dependent on the
language in which ISPF is installed. The English format is YY/MM/DD.

last-modified-date
The date the member was last modified. The format of this parameter is the
same as the create-date parameter.

last-modified-time
The time the member was last modified. This parameter should be specified as
a character field and must be specified with 5 characters (for example -
hh:mm). This parameter may also be specified as an 8-character field in the
format hh:mm:ss. If the 6th character is not a colon, of if the 7th and 8th
characters (ss) are not in the range ’00’ to ’59’, only the hour and minute
specifications are used.

current-size
The current number of data records in the member. This parameter must be an
integer between 0 and 65 535, inclusive.

initial-size
The original number of data records in the member when it was created. This
parameter must be an integer between 0 and 65 535, inclusive.

records-modified
The number of data records modified in a member since it was created. This
parameter must be an integer between 0 and 65 535, inclusive.

user-id
The user ID of the user that last modified the data. The maximum length of
this parameter is 7 characters.

DELETE
PDF statistics are removed for the specified members.

4-char-year-create-date
The date that the member was created, in 4-character year format. The format
of the date depends on the language in which ISPF and ISPF/PDF are invoked.
The English format is YYYY/MM/DD.

4-char-year-last-modified-date
The date that the member was last changed, in 4-character year format. The
format of the date depends on the language in which ISPF and ISPF/PDF are
invoked. The English format is YYYY/MM/DD.

SCLM
The SCLM setting is a bit that ISPF uses to determine what type of edit the file
last had performed upon it.
On The last edit of this file was under SCLM control.
Off The last edit of this file was under control of something other than

SCLM.
Asis This LMMSTATS operation is transferring the current setting of this file

as it already is.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

LMMSTATS

Chapter 2. Description of ISPF Services 161



Return Codes
The following return codes are possible:

0 Normal completion.

4 One of the following:
v Data set is empty.
v No members matched the pattern.

8 Member not found.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of the following:
v Invalid parameter value.
v Data set is not partitioned.
v Data ID represents a concatenation of data sets.
v Data set is opened for output.

20 Severe error; unable to continue.

Example
This example invokes LMMSTATS to set to 20 the version number of member
MYPROG in the data set associated with the data ID stored in DDVAR.

Command Invocation
ISPEXEC LMMSTATS DATAID(&DDVAR) MEMBER(MYPROG) VERSION(20)

Call Invocation
CALL ISPLINK ('LMMSTATS',DDVAR,'MYPROG ',20);

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMMSTATS DATAID(&DDVAR) MEMBER(MYPROG) VERSION(20)';

Set the program variable BUFLEN to the length of the variable BUFFER.
CALL ISPEXEC (BUFLEN, BUFFER);

LMOPEN – Open a Data Set
The LMOPEN service opens the data set associated with a given data ID so the
data set can be either read from, using LMGET, or written to, using LMPUT. The
LMINIT service must be completed before LMOPEN can be used.

For each LMOPEN invocation, you should invoke a matching LMCLOSE service.
The LMCLOSE service closes the data set to further processing until LMOPEN is
invoked again for that data set’s data ID. Therefore, you should invoke the
LMCLOSE service when processing is completed for that data set. Otherwise,
unwanted data can be read from or written to the data set.

Note: Some library access services do not require that LMOPEN be executed
before invocation (for example, LMCOPY and LMMOVE). Refer to the
service description to determine whether or not LMOPEN should be
invoked.

LMMSTATS

162 z/OS V1R2.0 ISPF Services Guide



It is the responsibility of the dialog developer to ensure that a data set is opened
for output only once. ISPF does not protect against this situation. From the time
LMOPEN for output is invoked until LMCLOSE is invoked, there are certain
restrictions on what can be done. Do not invoke the EDIT, DISPLAY, or TBDISPL
services. Displaying any panel at all may allow the user to edit the already opened
data set or invoke a dialog that opens the same data set for output.

Command Invocation Format
ISPEXEC LMOPEN DATAID(data-id)

[OPTION(INPUT|OUTPUT)]

[LRECL(lrecl-var)]

[RECFM(recfm-var)]

[ORG(org-var)]

Call Invocation Format
CALL ISPLINK ('LMOPEN ',data-id

,['INPUT '|'OUTPUT ']

,[lrecl-var]

,[recfm-var]

,[org-var]);

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
data-id

The data ID associated with the data set to be opened. The data ID has been
generated by the LMINIT service. The maximum length of this parameter is 8
characters.

INPUT|OUTPUT
Whether the data set is to be opened for reading or writing. INPUT is the
default.

INPUT specifies that the dialog invoking the service uses the LMMFIND and
LMGET services to read from the data set. The enqueue value for the LMINIT
service can be SHR, EXCLU, or SHRW.

OUTPUT specifies that the dialog invoking the service uses LMPUT and either
LMMADD or LMMREP to write to the data set, or uses LMMDEL or
LMMREN to change the data set. The enqueue value for the LMINIT service
can be EXCLU, SHRW, or MOD. If the data set is allocated SHRW, ISPF uses
the RESERVE macro to reserve the DASD volume to the user when the data
set is opened for output. This DASD volume remains reserved to the user until
the LMCLOSE service is performed. The data ID must represent a single data
set, not a concatenation of data sets.

LMOPEN

Chapter 2. Description of ISPF Services 163



lrecl-var
The name of a character variable into which the actual data record length or, if
the record format is of variable length, the maximum data record length, is to
be stored. This is an output parameter. The maximum length of this parameter
is 8 characters.

recfm-var
The name of a character variable into which the record format code is to be
stored. This is an output parameter. This variable must contain at least four
characters. The maximum length of this parameter is 8 characters.

org-var
The name of a character variable into which the organization of the data is
stored. This is an output parameter. The variable contains “PO” if the data set
is partitioned and “PS” if it is physical sequential. The maximum length of this
parameter is 8 characters.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Data set could not be opened.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of the following:
v The parameter value is invalid.
v Data set is already open.
v Cannot open concatenated data sets for output.
v Cannot open a data set allocated SHR for output.

16 Truncation or translation error in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the LMOPEN service to open the data set associated with
the data ID in variable DDVAR for reading. The record length is to be returned in
variable DLVAR, the record format in RFVAR, and the data set organization in
ORGVAR.

Command Invocation
ISPEXEC LMOPEN DATAID(&DDVAR) OPTION(INPUT) +

LRECL(DLVAR) RECFM(RFVAR) +
ORG(ORGVAR)

Call Invocation
CALL ISPLINK('LMOPEN ',DDVAR,'INPUT ',

'DLVAR ','RFVAR ',
'ORGVAR ');

OR

LMOPEN

164 z/OS V1R2.0 ISPF Services Guide



Set the program variable BUFFER to contain:
BUFFER = 'LMOPEN DATAID(&DDVAR) OPTION(INPUT)

LRECL(DLVAR) RECFM(RFVAR)
ORG(ORGVAR)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMPRINT – Print a Partitioned or Sequential Data Set
The LMPRINT service prints to the ISPF list data set an entire sequential or
partitioned data set, certain specified members of a partitioned data set, or an
index listing for a partitioned data set. The INDEX parameter can be used with
fixed-, variable-, or undefined-record formats. If the INDEX parameter is not used,
the data set to be printed must be fixed- or variable-record format. Completion of
the LMINIT service is required before you invoke LMPRINT.

Command Invocation Format
ISPEXEC LMPRINT DATAID(data-id)

[MEMBER(member-name)]

[INDEX]

[FORMAT(YES|NO)]

Call Invocation Format
CALL ISPLINK ('LMPRINT ',data-id

,[member-name]

,['INDEX ']

,['YES '|'NO ']);

OR

CALL ISPEXEC (buf-len,buffer);

Parameters
data-id

The data ID associated with the data set to be printed. The data ID has been
generated by the LMINIT service. The maximum length of this parameter is 8
characters.

member-name
The member name or pattern of the members to be printed. An asterisk(*)
indicates that all members should be printed. If an index print is requested,
member-name must not be specified. The maximum length of this parameter is
8 characters. For more information on patterns and pattern matching, see the
ISPF User’s Guide

INDEX
Indicates that only the index will be printed.

LMOPEN

Chapter 2. Description of ISPF Services 165

|
|
|
|
|
|



YES|NO
Indicates if the output is to be formatted. The default is YES.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

4 One of the following:
v Data set is empty or contains an empty member.
v No members matched the pattern.

8 Member not found.

10 No data set associated with given data ID.

12 One of the following:
v Invalid data set organization; must be partitioned or sequential.
v Invalid parameter.

20 Severe error; unable to continue.

Example
This example invokes the LMPRINT service to print the sequential data set
associated with the data ID in variable DDVAR, with no formatting of output.

Command Invocation
ISPEXEC LMPRINT DATAID(&DDVAR) FORMAT(NO)

Call Invocation
CALL ISPLINK('LMPRINT ',DDVAR,' ',' ','NO ');

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMPRINT DATAID(&DDVAR) FORMAT(NO)';

Set the program variable BUFLEN to the length of the variable BUFFER.

Issue the following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMPUT – Write a Logical Record to a Data Set
The LMPUT service writes one logical record to the data set associated with a
given data ID. The first LMPUT writes the first logical record to the data set, and
later invocations write succeeding records. The LMINIT service with
ENQ(EXCLU), ENQ(SHRW), ENQ(MOD), and the LMOPEN service with the
OUTPUT option must be completed before you can use the LMPUT service.

LMPRINT

166 z/OS V1R2.0 ISPF Services Guide



If the data set is an ISPF library or MVS partitioned data set, the LMMADD or
LMMREP service must be invoked after the last LMPUT to update the directory
and to write the last physical record.

If the data set is sequential, the LMCLOSE service must be invoked after the last
LMPUT to write the last physical record and to close the data set.

The LMPUT service writes records to a data set as is. That is, the LMPUT service
does not pack data before writing it if the data is in unpacked format. In order to
pack data before writing it, use Edit with the pack option.

Your installation can supply a compression exit by updating the ISPF configuration
table. For more information on the configuration table, refer to ISPF Planning and
Customizing

Command Invocation Format
ISPEXEC LMPUT DATAID(data-id)

MODE(INVAR|MOVE)

DATALOC(dataloc-var)

DATALEN(data-length)

[NOBSCAN]

Call Invocation Format
CALL ISPLINK ('LMPUT ',data-id

,'INVAR '|'MOVE '

,dataloc-var

,data-length

,' '

,['NOBSCAN ']);

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
data-id

The data ID associated with the data set into which the record is to be written.
The data ID has been generated by the LMINIT service. The maximum length
of this parameter is 8 characters.

INVAR|MOVE
INVAR mode shows that the data-location parameter variable contains the data
itself; MOVE mode shows that the data-location parameter contains the
address of the data to be written. A command dialog can use only INVAR
mode.

dataloc-var
The name of a variable that, on entry to the LMPUT service, contains either the

LMPUT

Chapter 2. Description of ISPF Services 167



data to be written (INVAR mode) or the fullword binary virtual storage
address of the data to be written (MOVE mode).

The value of the variable passed from a program function can be either the
data record itself or the address of the data record, but it must be consistent
with the INVAR|MOVE specification above. If the variable was passed from a
command function written in CLIST or REXX, it must always contain the data
record. The maximum length of this parameter is 8 characters.

data-length
The length in bytes of the logical record to be written. The parameter must be
a positive non-zero integral value. If the data-length specification causes a
DBCS character string to be divided in the middle, the result may be
unpredictable.

NOBSCAN
The No Backscan option; no truncation of trailing blanks for records of variable
length occurs.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal completion.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

12 One of the following:
v The data set is not open or is not open for output.
v The parameter value is invalid.

16 Truncation or translation error in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the LMPUT service to write a data record, with a length of
80 bytes, contained in variable DATAVAR into the data set associated with the data
ID in variable DDVAR.

Command Invocation
ISPEXEC LMPUT DATAID(&DDVAR) MODE(INVAR) +

DATALOC(DATAVAR) DATALEN(80)

Call Invocation
DATALEN=80;
CALL ISPLINK('LMPUT',DDVAR,'INVAR ','DATAVAR ',DATALEN);
Where DATALEN is a fullword integer variable.

OR

Set the program variable BUFFER to contain:

LMPUT

168 z/OS V1R2.0 ISPF Services Guide



BUFFER = 'LMPUT DATAID(&DDVAR) MODE(INVAR)
DATALOC(DATAVAR) DATALEN(80)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

Note: Null variables must be defined to have a length greater than zero. Programs
containing definitions of null variables must specify VDEFINE with the
NOBSCAN option. Null variables defined in CLISTs should be initialized
with the &STR built-in function. Null variables defined in REXX should be
initialized with x = ’ ’, where x is the name of the variable.

LMQUERY – Give a Dialog Information about a Data Set
The LMQUERY service returns values specified for the LMINIT service parameters
that are associated with a given data ID. In this way, LMQUERY provides the
dialog with selected information about a data set by showing how the LMINIT
parameters were set up when the data ID of that data set was generated.

The service sets the contents of the variables named with the information being
requested. Blanks are returned in a given variable if no value applies. For example,
if DATASET was not used in LMINIT, DATASET in LMQUERY would have
blanks.

Command Invocation Format
ISPEXEC LMQUERY DATAID(data-id)

[PROJECT(proj-var)] [GROUP1(group1-var)]

[GROUP2(group2-var)] [GROUP3(group3-var)]

[GROUP4(group4-var)] [TYPE(type-var)]

[DATASET(dsn-var)] [DDNAME(ddn-var)]

[VOLUME(serial-var)] [ENQ(enq-var)]

[OPEN(open-var)] [LRECL(lrecl-var)]

[RECFM(recfm-var)] [DSORG(dsorg-var)]

[ALIAS(alias-var)] [PASSWORD(password-var)]

Call Invocation Format
CALL ISPLINK ('LMQUERY ',data-id

,[proj-var] ,[group1-var]

,[group2-var] ,[group3-var]

,[group4-var] ,[type-var]

,[dsn-var] ,[ddn-var]

,[serial-var] ,[enq-var]

,[open-var] ,[lrecl-var]

,[recfm-var] ,[dsorg-var]

LMPUT

Chapter 2. Description of ISPF Services 169



,[alias-var] ,[password-var]);

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
data-id

The data ID associated with the data set for which information is being
requested. The data ID has been generated by the LMINIT service. The
maximum length of this parameter is 8 characters.

project-var
The name of an 8 character variable into which the value of the PROJECT
parameter specified on the LMINIT service will be placed.

group1-var
The name of an 8 character variable into which the value of the GROUP1
parameter specified on the LMINIT service will be placed.

group2-var
The name of an 8 character variable into which the value of the GROUP2
parameter specified on the LMINIT service will be placed.

group3-var
The name of an 8 character variable into which the value of the GROUP3
parameter specified on the LMINIT service will be placed.

group4-var
The name of an 8 character variable into which the value of the GROUP4
parameter specified on the LMINIT service will be placed.

type-var
The name of an 8 character variable into which the value of the TYPE
parameter specified on the LMINIT service will be placed.

dataset-var
The name of a 44 character variable into which the value of the DATASET
parameter specified on the LMINIT service will be placed.

ddname-var
The name of an 8 character variable into which the value of the DDNAME to
which the data set has been allocated will be placed. If a DDNAME was
specified on the LMINIT service, it will be returned. If no DDNAME was
specified, the DDNAME generated by ISPF will be returned.

volume-var
The name of a 6 character variable into which the value of the VOLUME
parameter specified on the LMINIT service will be placed.

enq-var
The name of a 5 character variable into which the value of the ENQ parameter
specified on the LMINIT service will be placed.

open-var
The name of an 8 character variable into which an indicator will be placed to
indicate whether the data set was opened for INPUT, OUPUT, or UPDATE. If
no LMOPEN has been done, blanks will be returned.

LMQUERY

170 z/OS V1R2.0 ISPF Services Guide



lrecl-var
The name of an 8 character variable into which the character representation of
the logical record length will be placed. If no LMOPEN has been done, blanks
will be returned.

recfm-var
The name of a 4 character variable into which the record format will be placed.
If no LMOPEN has been done, blanks will be returned. The following
characters may appear in the record format value:
F Fixed length records
V Variable length records
U Undefined length records
B Blocked records
T Track overflow
M Machine control characters
A ANSI control characters

dsorg-var
The name of a 2 character variable into which the data set organization (PO or
PS) will be placed.

alias-var
The name of a 1 character variable into which an indicator will be placed to
indicate whether the data set name originally specified was an alias name.
Values of Y or N will be returned.

password-var
The name of an 8 character variable into which the value of the PASSWORD
parameter specified on the LMINIT service will be placed.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Blanks are returned in any variable for which there is no applicable value.

Return Codes
The following return codes are possible:

0 Normal completion.

4 No applicable information available for a specified keyword; blanks are
returned.

10 No data set is associated with the given data ID; that is, LMINIT has not
been completed.

16 Truncation or translation error in accessing dialog variables.

20 Severe error; unable to continue.

Example
This example invokes the LMQUERY service to provide information about the ISPF
library associated with the data ID in variable DDVAR. The data ID is created by
using the LMINIT service with an ISPF library name. They use the following
variables:

LMQUERY

Chapter 2. Description of ISPF Services 171



PRJV Highest-level qualifier of the libraries.

GRP1V, GRP2V, GRP3V, and GRP4V
Second-level qualifiers of the libraries.

TYPEV
Third-level qualifier of the libraries.

Command Invocation
ISPEXEC LMQUERY DATAID(&DDVAR) PROJECT(PRJV) GROUP1(GRP1V) +

GROUP2(GRP2V) GROUP3(GRP3V) GROUP4(GRP4V) +
TYPE(TYPEV)

Call Invocation
CALL ISPLINK('LMQUERY ',DDVAR,'PRJV ','GRP1V ','GRP2V ',

'GRP3V ','GRP4V ','TYPEV ');

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMQUERY DATAID(&DDVAR) PROJECT(PRJV) GROUP1(GRP1V)

GROUP2(GRP2V) GROUP3(GRP3V) GROUP4(GRP4V)
TYPE(TYPEV)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LMRENAME – Rename an ISPF Library
The LMRENAME service renames an ISPF library or an MVS data set with a
three-level qualified data set name. The data set name used must be the cataloged
name, not an alias data set name.

Command Invocation Format
ISPEXEC LMRENAME PROJECT(project)

GROUP(group)

TYPE(type)

{[NEWPROJ(new-project)]
[NEWGROUP(new-group)]
[NEWTYPE(new-type)] }

Call Invocation Format
CALL ISPLINK('LMRENAME',project

,group

,type

{,[new-project]
,[new-group]
,[new-type] });

OR

CALL ISPEXEC (buf-len, buffer);

LMQUERY

172 z/OS V1R2.0 ISPF Services Guide



Parameters
project

The highest-level qualifier in the specification of an ISPF library or MVS data
set with a three-level qualified data set name. The maximum length of this
parameter is 8 characters.

group
The second-level qualifier in the specification of an ISPF library or MVS data
set with a three-level qualified data set name. The maximum length of this
parameter is 8 characters.

type
The third-level qualifier in the specification of an ISPF library or MVS data set
with a three-level qualified data set name. The maximum length of this
parameter is 8 characters.

new-project
The new highest-level qualifier. If this parameter is not specified, the project
parameter value is used. The maximum length of this parameter is 8
characters.

new-group
The new second-level qualifier. If this parameter is not specified, the group
parameter value is used. The maximum length of this parameter is 8
characters.

new-type
The new third-level qualifier. If this parameter is not specified, the type
parameter value is used. The maximum length of this parameter is 8
characters.

Note: You must specify either new-project, new-group, or new-type.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

Return Codes
The following return codes are possible:

0 Normal completion.

4 New name already exists.

8 One of the following:
v Specified data set does not exist.
v Rename or catalog failed.
v Data set name is an alias.

12 The parameter value is invalid.

20 Severe error; unable to continue.

LMRENAME

Chapter 2. Description of ISPF Services 173



Example
This example invokes the LMRENAME service to rename a data set with the name
DEPT877.PRIVATE.ASSEMBLE to DEPT877.MINE.ASSEMBLE.

Command Invocation
ISPEXEC LMRENAME PROJECT(DEPT877) +

GROUP(PRIVATE) +
TYPE(ASSEMBLE) +
NEWGROUP(MINE)

Call Invocation
CALL ISPLINK('LMRENAME','DEPT877 ',

'PRIVATE ',
'ASSEMBLE',' ',
'MINE ');

OR

Set the program variable BUFFER to contain:
BUFFER = 'LMRENAME PROJECT(DEPT877)

GROUP(PRIVATE)
TYPE(ASSEMBLE)
NEWGROUP(MINE)';

Set the program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

LOG – Write a Message to the Log Data Set
The LOG service causes a message to be written to the ISPF log data set.

The log data set, if allocated, is normally processed when you exit ISPF. A LOG
command is available to allow you to process the log data set without exiting ISPF.

Command Invocation Format
ISPEXEC LOG MSG(message-id)

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('LOG ', message-id);

Parameters
message-id

Specifies the identification of the message that is to be retrieved from the
message library and written to the log.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

LMRENAME

174 z/OS V1R2.0 ISPF Services Guide



buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

12 The message-id contains invalid syntax or was not found.

20 Severe error.

Example 1
In a CLIST, dialog variable TERMSG contains a message-id. Write this message in
the ISPF log file.
ISPEXEC LOG MSG(&TERMSG )

Example 2
In a PL/I program, program variable TERMSG contains a message-id. The variable
TERMSG has been made accessible to ISPF by a previous VDEFINE operation.
Write this message in the ISPF log file. Set the program variable BUFFER to
contain:
LOG MSG(&TERMSG)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('LOG ',TERMSG);

Example 3
Write message ABCX013 in the ISPF log file.
ISPEXEC LOG MSG(ABCX013)

Set the program variable BUFFER to contain:
LOG MSG(ABCX013)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('LOG ','ABCX013 ');

MEMLIST – Member List Dialog Service
The MEMLIST service enables you to access the Library Utility member list from
within a dialog.

When you invoke the MEMLIST service, a member list is displayed with either a
1–character or 9–character line command area. You can perform any of the Library

LOG

Chapter 2. Description of ISPF Services 175



Utility functions, such as Edit, Browse, View, Print, Delete, and Rename, from
within the member list. If the line command area is 9 characters, you can also
invoke TSO commands against the selected member.

The MEMLIST service is given a data-id that has been associated with a
partitioned data set or concatenation of partitioned data sets by the LMINIT
service. The dataid must be freed by the LMFREE service.

Command Invocation Format
ISPEXEC MEMLIST DATAID(data-id)

[MEMBER(pattern)]
[CONFIRM(YES|NO)]
[PANEL(panel-name)]
[FIELD(1|9)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('MEMLIST ', data-id,

,[pattern]

,['YES'|'NO']

,[panel-name]

,['1'|'9']);

Parameters
data-id

Specifies the variable in which the data ID that uniquely identifies the
partitioned data set is stored.

pattern
A character string that is used to specify which members are to be displayed. If
no pattern is specified, the entire list is displayed.

YES|NO
Specifies whether the Confirm Delete panel appears when you try to delete a
member from the data set you specifed. YES is the default.

If YES is specified, ISPF displays the Confirm Delete panel.

If NO is specifed, ISPF does not display the Confirm Delete panel. The
member is deleted with no additional action on your part.

panel-name
The name of the panel to use for displaying the member list. This can be a
customized panel that you provide. Refer to the ISPF Planning and Customizing
manual for more information about developing a customized panel. If this
parameter is omitted, the default panel is ISRUDMM if FIELD is set to 1, and
ISRUDSM if FIELD is set to 9.

MEMLIST

176 z/OS V1R2.0 ISPF Services Guide



1|9
Indicates the length of the Line Command field on the member list display.
The default is 9.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 The requested data set was empty or no members matched the specified
pattern.

10 No data set is associated with the given data ID. LMINIT has not been
completed.

12 Indicates one of the following conditions:
v Data set not partitioned.
v Parameter value not valid.
v Invocation syntax not valid.

16 A truncation or translation error occurred in accessing dialog variables.

20 Severe error.

Example
The following example shows an invocation of MEMLIST that displays the
member list of a partitioned data set with the Delete Data Set Confirmation panel.
The variable ID contains a data-id generated by the LMINIT service.

Command Invocation
ISPEXEC MEMLIST DATAID(&ID) CONFIRM(YES)

Call Invocation
CALL ISPLINK ('MEMLIST ',ID,'YES ');

or alternately

Set the program variable BUFFER to contain:
BUFFER='MEMLIST DATAID(&ID) CONFIRM(YES)';

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

PQUERY – Obtain Panel Information
The PQUERY service returns information for a specified area on a specific panel.
The type, DYNAMIC or GRAPHIC, size, and position characteristics associated
with the area are returned in variables.

MEMLIST

Chapter 2. Description of ISPF Services 177



Command Invocation Format
ISPEXEC PQUERY PANEL(panel-name) AREANAME(area-name)

[AREATYPE(area-type-name)]

[WIDTH(area-width-name)]

[DEPTH(area-depth-name)]

[ROW(row-number-name)]

[COLUMN(column-number-name)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('PQUERY ', panel-name, area-name

[,area-type-name]

[,area-width-name]

[,area-depth-name]

[,row-number-name]

[,column-number-name]);

Parameters
panel-name

Specifies the name of the panel for which information is desired.

area-name
Specifies the name of an area within the panel whose attributes are to be
returned.

area-type-name
Specifies the name of a variable in which the area type is to be stored. Either
DYNAMIC or GRAPHIC is returned left-justified and padded with blanks.
Nulls are returned if the return code is non-zero.

area-width-name
Specifies the name of a variable in which the number of columns in the area is
to be stored. For a call, the variable should be defined as a fullword fixed
integer.

area-depth-name
Specifies the name of a variable in which the number of rows comprising the
area is to be stored. For areas that are not extendable (EXTEND(OFF)), this is
the number of rows of the rectangular area in the panel definition. For
extendable areas (EXTEND(ON)), this is the number of rows in the area after
the panel body has been automatically extended to the depth of the physical
screen on which the PQUERY service request is being issued. When issuing a
PQUERY service request in the batch environment, the screen depth is

PQUERY

178 z/OS V1R2.0 ISPF Services Guide



specified as the value of the BATSCRD parameter on the ISPSTART call. For a
call, the variable should be defined as a fullword fixed integer.

row-number-name
Specifies the name of a variable in which the number of the row of the top left
position of the area is to be stored. For a call, the variable should be defined as
a fullword fixed integer.

column-number-name
Specifies the name of a variable in which the number of the column of the top
left position of the area is to be stored. For a call, the variable should be
defined as a fullword fixed integer.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

If the panel uses a variable for the WIDTH keyword value on the BODY header,
such as )BODY WIDTH(&WID), that variable must be set before invoking the
PQUERY service.

Return Codes
The following return codes are possible:

0 Normal completion

8 The panel does not contain the specified area.

12 The specified panel cannot be found.

16 Not all are values returned because insufficient space was provided.

20 Severe error.

Example
For the area named AREA1 on panel XYZ, return the number of columns in
variable PQCOLS and the area type in variable ATYPE.
ISPEXEC PQUERY PANEL(XYZ) AREANAME(AREA1)
AREATYPE(ATYPE) WIDTH(PQCOLS)

Set the program variable BUFFER to contain:
PQUERY PANEL(XYZ) AREANAME(AREA1) AREATYPE(ATYPE) WIDTH(PQCOLS)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('PQUERY ','XYZ ','AREA1 ',

'ATYPE ','PQCOLS ');

PQUERY

Chapter 2. Description of ISPF Services 179



QBASELIB – Query Base Library Information
The QBASELIB service enables an ISPF dialog to obtain the current Library
information for a specified DDNAME. For a specified ddname, the data set names
allocated to that ddname are returned in a dialog variable.

Command Invocation Format
ISPEXEC QBASELIB dd-name [ID(id-var)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('QBASELIB',dd-name,[,id-var)]

Parameters
dd-name

Specifies the ddname that is being queried. The value can be ISPPLIB,
ISPMLIB, ISPSLIB, ISPTLIB, ISPLLIB, ISPTABL, ISPFILE, or any valid base
DDNAME.

id-var
Optional parameter that specifies the name of a dialog variable which is to
contain ″ID″ information. It is set to the data set name(s) of the dd-name that
was specified in the service call. All data set names returned are fully qualified.
Multiple data set names are separated by a comma. TSO has a maximum of
255 data set names allowed in the data set list. A data set name list is bounded
by parenthesis when the QBASELIB service is requested through ISPLINK. The
variable is not modified if the dd-name specified is not allocated. It is the
responsibility of the dialog developer to initialize this variable.

Note: Id-var should be initialized to blanks before every QBASELIB call.

buf-len
Specifies a fullword fixed binary integer containing the length of ″buffer.″

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 A DDNAME for the specified dd-name exists and the requested
information has been successfully returned.

4 The specified dd-name is not defined.

16 A dialog variable translation or truncation error has occurred.

20 A severe error has occurred.

QBASELIB

180 z/OS V1R2.0 ISPF Services Guide



Example
A base library for messages (ISPMLIB) is defined. Query the ″ID″ information and
return the ″ID″ information in the variable IDV.

Command Invocation
ISPEXEC QBASELIB ISPMLIB ID(IDV)

Call Invocation

Set the program variable BUFFER to contain:
QBASELIB ISPMLIB ID(IDV)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('QBASELIB','ISPMLIB ','IDV ');

QLIBDEF – Query LIBDEF Definition Information
The QLIBDEF service allows an ISPF dialog to obtain the current LIBDEF
definition information. This information can be saved by the dialog and used later
to restore any LIBDEF definitions that may have been overlaid. For each LIBDEF
lib-type, the ID parameter and the ″type″ of ID is returned. The absence of an
active LIBDEF definition for a specific lib-type is indicated by the return code.

Command Invocation Format
ISPEXEC QLIBDEF lib-type [TYPE(type-var)] [ID(id-var)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('QLIBDEF ',lib-type,[,type-var][,id-var)]

Parameters
lib-type

Specifies the LIBDEF lib-type definition that is being queried. The value may
be ISPPLIB, ISPMLIB, ISPSLIB, ISPTLIB, ISPLLIB, ISPILIB, ISPTABL, ISPFILE,
or a generic name. The values that may be specified on a LIBDEF service may
be specified on a QLIBDEF service.

type-var
Optional parameter that specifies the name of a dialog variable which is to
contain the ″type″ of LIBDEF definition. The possible values returned are
DATASET, EXCLDATA, LIBRARY or EXCLLIBR. The variable is not modified
if there is no LIBDEF. It is the responsibility of the dialog developer to
initialize this variable.

QBASELIB

Chapter 2. Description of ISPF Services 181



Note: Type-var should be initialized to blanks before every QLIBDEF call.

id-var
Optional parameter that specifies the name of a dialog variable which is to
contain ″ID″ information. It is set to the ddname or data set name(s) that was
specified on the last active LIBDEF service. All data set names returned are
fully qualified, even if the original LIBDEF request did not specify fully
qualified names. Multiple dataset names are separated by a comma. The
LIBDEF service has a maximum of 15 dataset names allowed in the data set
list. A data set name list is bounded by parenthesis when the QLIBDEF service
is requested through ISPLINK. The variable is not modified if there is no
LIBDEF in effect. It is the responsibility of the dialog developer to initialize this
variable.

Note: Id-var should be initialized to blanks before every QLIBDEF call.

buf-len
Specifies a fullword fixed binary integer containing the length of ″buffer.″

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Although not mandatory, it is suggested that the service interface (ISPLINK or
ISPEXEC) used by the QLIBDEF be the same as that used on the LIBDEF service to
restore the definition. This eliminates the need to adjust the syntax of the
information returned by QLIBDEF.

Return Codes
The following return codes are possible:

0 A LIBDEF definition for the specified lib-type exists and the requested
information, if any, has been successfully returned.

4 The specified lib-type does not have an active LIBDEF definition.

12 An invalid lib-type value of ISPPROF has been specified.

16 A dialog variable translation or truncation error has occurred.

20 A severe error has occurred.

Example
A panel library, ISPPLIB has been defined by the LIBDEF service. Query the type
of LIBDEF definition and the LIBDEF ″ID″ information and return the type of
LIBDEF definition in the variable, TYPEV, and the LIBDEF ″ID″ information in the
variable, IDV.
ISPEXEC QLIBDEF ISPPLIB TYPE(TYPV) ID(IDV)

Set the program variable BUFFER to contain:
QLIBDEF ISPPLIB TYPE(TYPV) ID(IDV)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately

QLIBDEF

182 z/OS V1R2.0 ISPF Services Guide



CALL ISPLINK ('QLIBDEF ','ISPPLIB ','TYPEV ','IDV ');

QUERYENQ – Query System ENQ Data

Command Invocation Format
QUERYENQ TABLE(table-name)

QNANE(qname)
RNAME(rname)

REQ(pattern)
WAIT
LIMIT(limit)
SAVE(list-id)
XSYS

Call Invocation Format
CALL ISPLINK ('QUERYENG' ,table-name

,qname
,rname
,pattern
,['WAIT ']
,limit
,list-id
,['XSYS ']);

OR
CALL ISPEXEC (buf-len, buffer);

Parameters
Table-name

A table that must not exist before the service is called. It is returned to the user
as an open, non-writable table. It is the caller’s responsibility to delete the table
with TBEND.

Qname
A variable name that can contain a name or a prefix. A prefix must end in an
asterisk. The default is ’*’ (all qnames). Maximum length is 8 characters and
must be fully padded if called from a compiled program because imbedded
blanks are allowed.

Rname
A variable name that can contain a name or a prefix. A prefix must end in an
asterisk. The default is ’*’ (all rnames). Its length is 255 characters and must be
fully padded or VDEFINED to a shorter length if called from a compiled
program because imbedded blanks are allowed.

Pattern
Used to limit the ENQ search to specific requesters. The pattern can contain
asterisks which will match zero or more characters, and percent signs which
will match one character. The value of pattern is the actual pattern, and not a
variable name.

If the variable value is not a prefix (does not end in an asterisk before any
trailing blanks), it must be the exact length of the RNAME being requested.
For compiled programs, this can be controlled on the VDEFINE or VREPLACE
statement. The exceptions to this rule are for QNAMEs SPFEDIT and
SPFUSER. For SPFUSER requests, the variable name is padded or truncated to
7 characters. For SPFEDIT requests, variables less than 45 characters in length

QLIBDEF

Chapter 2. Description of ISPF Services 183

|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|



are padded with blanks to 44 and treated as a prefix. Variables longer than 44
characters are padded to 52 and not treated as a prefix. Variables that are
passed in as a prefix are not changed.

WAIT
Indicates that all waiting ENQs are returned. This shows all ENQ contention
known to the local system. RNAME and QNAME are ignored for WAIT.

LIMIT
The maximum size of the table. The default is 5000. Zero (0) indicates no limit.

List-id
An 8-character data set name qualifier, used to create a data set named
[prefix.userid].list-id.ENQLIST according to standard ISPF naming conventions.
The data set is a VB 332 data set, containing the same data as would be
returned in the table. The order is: Owner, System, Disposition, Hold, Scope,
Global, QNAME, and RNAME. RNAME is last because trailing blanks are
removed to reduce the size of the data set. A space is added between each
field.

XSYS
Indicates that the XSYS=YES parameter should be use on the GQSCAN macro.
The default is to use XSYS=NO. This means that some ENQs on other systems
may not be returned. Use of the XSYS keyword may have significant
performance implications. See the documentation for the GQSCAN macro for
more information.

Return codes
The following return codes are possible:

0 Table returned or data set written, but XSYS parameter was not specified
and the system is running in STAR mode. The data returned may not
reflect all ENQs on all systems.

2 Table returned or data set written.

4 Table returned but truncated due to limit.

8 No ENQs satisfy the request.

10 No ENQs satisfy the request, but XSYS parameter was not specified and
the system is running in STAR mode. The data returned may not reflect all
ENQs on all systems.

12 Table creation error, parameter or other termination error. See messages for
more detail. This includes services not available due to configuration table
restrictions.

14 The SAVE data set is in use by another user.

20 Severe error, including TBADD error or data set creation errors.

REMPOP – Remove a Pop-Up Window
The REMPOP service removes the pop-up window created by an ADDPOP service
call. After invoking the REMPOP service, any DISPLAY, TBDISPL or SELECT panel
service call will either display a panel in the full panel area of the screen or a
higher level pop-up window, if one is active.
Command Procedure Format

ISPEXEC REMPOP [ ALL ]

QLIBDEF

184 z/OS V1R2.0 ISPF Services Guide

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

||
|
|

||

||

||

||
|
|

||
|
|

||

||

|



Call Invocation Format

CALL ISPEXEC (buf-len, buffer);

CALL ISPLINK ('REMPOP ' [,'ALL ']);

Parameters
ALL

Indicates that the dialog manager is to remove all pop-up windows that were
created at the current select level. If you do not specify ALL, only one pop-up
window is removed.

buf-len
Specifies a fullword fixed binary integer containing the length of buffer.

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return codes
The following return codes are possible:

0 Normal completion.

16 A pop-up window does not exist at this select level.

20 Severe error.

SELECT – Select a Panel or Function
The SELECT service can be used to display a hierarchy of selection panels or
invoke a function.

Within a dialog function, a program can invoke another program using standard
CALL or LINK conventions. These nested programs are transparent to the dialog
manager. However, when the invoked program is a new dialog function, SELECT
must be used.

APL2 can be invoked by specifying the APL2 command and its appropriate
keywords as the value of the CMD keyword of the SELECT service. In addition,
the SELECT keyword and value LANG(APL) should be coded on the SELECT
statement if the APL2 function needs to use DM component services. Otherwise,
unpredictable results can occur. The LANG(APL) information provides the basis
for establishing an ISPF – APL2 environment, and is required if any ISPF dialog
services are to be used. APL2 limits a user to one active workspace. In split screen
mode, if APL2 is active on one screen, it cannot be activated by the SELECT
service on the other screen.

Command Invocation Format
ISPEXEC SELECT { PANEL(panel-name) [ADDPOP] }

{ [OPT(option)] }
{ }
{ CMD(command) [LANG(APL|CREX)] }
{ [MODE(LINE|FSCR)] }

REMPOP

Chapter 2. Description of ISPF Services 185



{ [BARRIER] }
{ [NEST] }
{ }
{ PGM(program-name) [PARM(parameters)] }
{ [MODE(LINE|FSCR)] }
{ WSCMD(workstation-command) }
{ [MODAL|MODELESS] }
{ [WSDIR(dir)] }
{ [MAX|MIN] }
{ [VIS|INVIS] }
{ WSCMDV(var_name) }
{ [MODAL|MODELESS] }
{ [WSDIR(dir)] }
{ [MAX|MIN] }
{ [VIS|INVIS] }

[NEWAPPL[(application-id)] [PASSLIB]]|[NEWPOOL]

[SUSPEND]

[SCRNAME(screen_name)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('SELECT ', length, keywords);

Note: parameters that can appear in keywords are:

{ PANEL(panel-name) [ADDPOP] }
{ [OPT(option)] }
{ }
{ CMD(command) [LANG(APL|CREX)] }
{ [MODE(LINE|FSCR)] }
{ [BARRIER] }
{ [NEST] }
{ }
{ PGM(program-name) [PARM(parameters)] }
{ [MODE(LINE|FSCR)] }
{ WSCMD(workstation-command) }
{ [MODAL|MODELESS] }
{ [WSDIR(dir)] }
{ [MAX|MIN] }
{ [VIS|INVIS] }
{ WSCMDV(var) }
{ [MODAL|MODELESS] }
{ [WSDIR(dir)] }
{ [MAX|MIN] }
{ [VIS|INVIS] }

[NEWAPPL[(application-id)] [PASSLIB]]|[NEWPOOL]

[SUSPEND]

[SCRNAME(screen-name)]

Parameters
panel-name

Specifies the name of a selection panel to be displayed.

SELECT

186 z/OS V1R2.0 ISPF Services Guide



option
Specifies an initial option, which must be a valid option on the menu specified
by panel-name. Specifying an option causes direct entry to that option without
displaying the menu. The menu is processed in non-display mode, as though
the user had entered the option.

ADDPOP
Specifies that the panel displayed from a SELECT service appears in a pop-up
window. An explicit REMPOP is performed when the SELECT PANEL has
ended.

command
Specifies a CLIST command procedure, any TSO command that is to be
invoked as a dialog function, or an APL2 command with appropriate keyword
values. If the APL2 workspace is already started, command specifies a string to
be passed to the APL2 workspace for execution.

CLIST command parameters can be included within the parentheses. You can
prefix the CLIST procedure name with a percent sign (%) to:
v Improve performance.
v Prevent ISPF from entering line display mode if you do not specify

MODE(FSCR).
v Assure that the CLIST command procedure is invoked if ISPF has access to a

program function that has the same name as the CLIST. If you use the
percent sign prefix, ISPF searches only for a CLIST with the specified name.
However, without the percent sign prefix, ISPF searches first for a program,
then for a CLIST procedure.
TSO commands specified by this parameter are invoked by the ATTACH
macro.

LANG(APL)
If this is the first LANG(APL) request, this parameter specifies that the
command specified by the CMD keyword is to be invoked and an APL2
environment is to be started. If this is not the first request, this parameter
specifies that the string specified by the CMD keyword is to be passed to the
APL2 workspace and executed. If this is the first LANG(APL) request and a
command other than APL2, or equivalent, is specified by the CMD keyword,
the result is not predictable.

LANG(CREX)
Specify that the command specified in the CMD keyword is a REXX EXEC that
has been compiled and link-edited into a load module, and that a
CLIST/REXX function pool is to be used rather than an ISPF module function
pool.

See the ISPF Dialog Developer’s Guide and Reference , for further information
about Compiled REXX processing.

MODE(LINE)
Specifies that line mode is to be entered when selecting a command procedure
or program function. If you do not specify mode when selecting a command
procedure, line mode is entered unless you prefix the command with a percent
sign (%).

MODE(FSCR)
Specifies that line mode is not to be entered when selecting a command,
CLIST, or program function.

SELECT

Chapter 2. Description of ISPF Services 187



BARRIER
Specifies that no commands from the REXX data stack will be pulled upon
completion of a command invoked with the SELECT service.

NEST
Specifies that commands invoked with the SELECT service will be nested. This
will allow command output trapping and communication through global
variables.

program-name
Specifies the name of a program that is to be invoked as a dialog function. If
the program is coded in PL/I, it must be a MAIN procedure. Dialog
developers should avoid the ISP and ISR prefixes (the DM and PDF
component codes) in naming dialog functions. Special linkage conventions,
intended only for internal ISPF use, are used to invoke programs named
“ISPxxxxx” and “ISRxxxxx”.

This parameter must specify a name of a load module, load module alias, or
an entry point that is accessible by use of the LINK macro.

See the ISPF Dialog Developer’s Guide and Reference for restrictions that apply to
dialogs in various languages.

parameters
Specifies input parameters to be passed to the program. The program should
not attempt to modify these parameters.

The parameters within the parentheses are passed as a single character string,
preceded by a halfword containing the length of the character string, in binary.
The length value does not include itself.

Parameters passed from the SELECT service to a PL/I program can be
declared on the procedure statement in the standard way:
XXX: PROC (PARM) OPTIONS(MAIN);

DCL PARM CHAR (nnn) VAR;

If the value of the PARM field is to be used as an ISPF dialog variable, it must
be assigned to a fixed-length character string, because the VDEFINE service
cannot handle variable length PL/I strings.

Note: If you want to use special characters in your character string you must
use a single quotation mark at the beginning and at the end of the
string.

Certain high-level languages, such as PL/I, have parameter syntax
requirements specific to the language. For example, the first character of the
PARM field must be a slash (’/’), because PL/I assumes that any value prior to
the slash is a run-time option. Refer to the publications supporting the
language for specific requirements.

workstation-command
Specifies a fully-qualified workstation program with any of its parameters. To
issue a command that is not a program (.exe, .com, .bat, or .cmd file in OS/2)
the DOS and OS/2 environments allow the command to be prefaced with the
DOS COMMAND command or the OS/2 CMD command. For example, in the
DOS environment: SELECT WSCMD(COMMAND /C DIR C:), or in the OS/2
environment: SELECT WSCMD(CMD /C DIR C:).

SELECT

188 z/OS V1R2.0 ISPF Services Guide



MODAL
The MODAL parameter invokes the workstation command modally. It waits
until the workstation command has completed and then returns to ISPF.

MODELESS
The MODELESS parameter invokes the command modelessly and is only valid
when running in GUI mode. It is the default. It does not wait until the
workstation command has completed. It always returns a return code of zero if
the command was started, even if the command does not exist at the
workstation.

WSDIR(dir)
The WSDIR parameter specifies the variable name containing the workstation
current working directory. This directory is the directory from which the
workstation command should be invoked.

MAX
The MAX parameter attempts to start the workstation command in a
maximized window. The workstation command may override this request.
MAX and MIN are mutually exclusive.

MIN
The MIN parameter attempts to start the workstation command in a
minimized window. The workstation command may override this request.
MAX and MIN are mutually exclusive.

VIS
The VIS parameter attempts to start the workstation command as a visible
window. The workstation command may override this request. This is the
default. VIS and INVIS are mutually exclusive.

INVIS
The INVIS parameter attempts to start the workstation command in an
invisible (hidden) window. The workstation command may override this
request. VIS and INVIS are mutually exclusive.

var
Specifies a variable name that contains the text string of a command and its
parameters. Use this when the command path or parameters, or both, contain
any of the following: imbedded blanks, quotation marks, or special characters
that might not parse properly with the WSCMD service.

NEWAPPL
Specifies that a new application is being invoked.

application-id
Specifies a 1- to 4-character code for the new application named in this
SELECT service request. The code is to be prefixed to the user’s profile, the
edit profile, and the command table associated with the application, as follows,
where xxxx is the application-id:
Application Profile - xxxxPROF
Edit Profile - xxxxEDIT
Command Table - xxxxCMDS

The names xxxxPROF, xxxxEDIT, and xxxxCMDS represent table (member)
names in the profile or table input library.

If the NEWAPPL keyword is specified but the application-id is not specified,
the default application-id is ISP, as follows:

SELECT

Chapter 2. Description of ISPF Services 189



User Profile - ISPPROF
Edit Profile - ISPEDIT
Command Table - ISPCMDS

If the NEWAPPL keyword is not specified, the application-id defaults to the
current application-id.

If an application is invoked using SELECT with NEWAPPL and the invoked
application has its own command table that is defined to ISPTLIB using
LIBDEF, the LIBDEF of ISPTLIB must be done before issuing the SELECT
CMD(..) NEWAPPL(..) in order for the application’s command table to be
available for use. This is necessary because the command table associated with
the APPLID is opened at the time that the SELECT is processed. Failing to do
the LIBDEF for ISPTLIB prior to the SELECT with NEWAPPL will result in the
command table which was defined using LIBDEF not being opened and
commands not being found. If the application’s unique command table is not
found, then then the ISPF default command table, ISPCMDS, is loaded for that
dialog.

The following is an example of how to code a LIBDEF for ddname ISPTLIB
with the dataset that contains the command table, APPCCMDS, for application
APPC.

The application invoking CLIST CCC:
.
ISPEXEC SELECT CMD(CCC) NEWAPPL(TEMP)
.

CLIST CCC:
PROC 0
ISPEXEC LIBDEF ISPTLIB DATASET ID(....)
ISPEXEC SELECT CMD(CMDC) NEWAPPL(APPC) PASSLIB
ISPEXEC LIBDEF ISPTLIB
EXIT CODE(0)

PASSLIB
Indicates that the current set of application-level ISPF libraries, if any exist, are
to be used by the application being selected. PASSLIB is valid only if
NEWAPPL is specified.

The PASSLIB keyword can also be specified when setting the &ZSEL variable
in a selection panel or in command table entries containing the SELECT action.

When both NEWAPPL and PASSLIB are specified, the current set of
application-level libraries is made available to the selected application. Any
changes made to this set of libraries while this application is running are in
effect only while this application has control. Once the selected application
terminates, the original set of application-level libraries is reactivated.

If LIBDEF has been issued for a user link library when a SELECT specifying
NEWAPPL and PASSLIB is issued, the selected program makes available the
LIBDEF user link library definition. Any SELECTs subsequently issued by the
program employ member search orders dependent upon the LIBDEF user link
library definition.

If a SELECT of a program is issued, and a LIBDEF of a user link library has
not been made or PASSLIB is not specified, any SELECTs issued by the
program rely on the following convention for member search order:

SELECT

190 z/OS V1R2.0 ISPF Services Guide



JOB PACK AREA
ISPLLIB
STEP LIBRARY
LINK PACK AREA
LINK LIBRARY

If NEWAPPL is specified and PASSLIB is not specified, the current set of
application-level libraries, if any exist, are not to be used by the application
being selected. The deactivation of these libraries takes place before the
application is selected. The current application-level library definitions are
saved, however, so they can be replaced in the library search sequence when
the application being selected terminates.

When NEWAPPL and PASSLIB are not specified, the current set of
application-level libraries remains in effect because the selected function does
not represent a new application. If the selected function changes any of these
library definitions, the changes apply through all select levels of the
application of which the selected function is a part.

NEWPOOL
Specifies that a new shared variable pool is to be created without specifying a
new application. Upon return from the SELECT service, the current shared
variable pool is reinstated.

SUSPEND
Specifies that all pop-up windows in the logical screen should be temporarily
removed from the terminal screen. Panels displayed by the selected dialog will
appear in the full logical screen.

The selected dialog can issue ADDPOP and REMPOP services to create its own
pop-up windows. A dialog that is invoked with the SUSPEND option cannot
display panels in the windows created by the previous dialog.

When the selected dialog ends, any pop-up windows that were removed will
be restored.

The terminal screen is not changed at the time of the SELECT service. The
pop-up windows are removed or restored at the next panel display.

screen-name
Specifies that the logical screen in which the SELECT command is issued will
be given the specified ″screen name″. This logical screen will keep the screen
name until that select level is exited, then it returns to it’s previous value. The
user may override the screen name assigned with the SCRNAME command.

length
Specifies the length of a buffer containing the selection keywords. This
parameter must be a fullword fixed binary integer.

keywords
Specifies the name of a buffer containing the selection keywords. This is a
character string parameter. The selection keywords in the buffer are specified
in the same form as they would be coded for the ISPEXEC command. For
example:
BUFNAME = 'PANEL(ABC) OPT(9) NEWPOOL';

In the above example, it is assumed that BUFNAME is the name of the buffer.
The single quotes are part of the syntax of the PL/I assignment statement.
They are not stored in the buffer itself.

SELECT

Chapter 2. Description of ISPF Services 191



buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

If a command or program is invoked by using SELECT, the return code from the
command or program is passed to the function that invoked SELECT. If a selected
command, not using ISPF display services, could cause a full screen input or
output operation, the developer should refresh the entire screen on the next
display. To do this, use the CONTROL DISPLAY REFRESH service. A selected
command procedure or program can cause the screen settings to change. ISPF does
not check for these changes. It is the user’s responsibility to ensure that the screen
settings are saved and then restored prior to returning to ISPF.

The SELECT interface permits parameters to be specified as symbolic variables.
Prior to a scan and syntax check of a statement, variable names and the preceding
ampersands are replaced with the value of the corresponding variable. A single
scan takes place.

Note: If you receive an abend from a SELECT command, a message indicating the
abend code is issued. However, the ISPF subtask does not abend. The results
of this scenario are the same if you have ISPF TEST mode on or off.

Return Codes
The following return codes are possible if a panel is specified:

0 Normal completion. The END command was entered from the selected
menu.

4 Normal completion. The RETURN command was entered or the EXIT
option was specified from the selected menu or from some lower-level
menu.

12 The specified panel could not be found.

16 Truncation error in storing the ZCMD or ZSEL variable.

20 Severe error.

Note: A return code of 0 is returned when the SELECT service has been coded
with no other parameters.

The following return codes are possible from a MODAL workstation command:

20 Parameter or syntax on SELECT service (all SELECTs) is not valid.

41 A null command was passed to the workstation.

42 ISPF was not able to start the command at the workstation.

43 Remote execution of commands was not allowed by the user.

OTHER
The return code from the workstation command + 100 if the return code
from the workstation command was > 0

SELECT

192 z/OS V1R2.0 ISPF Services Guide



Example 1
In a CLIST, start a hierarchy of selection panels from a dialog function. The first
menu in the hierarchy is named QOPTION.
ISPEXEC SELECT PANEL(QOPTION)

Example 2
In a PL/I program, start a hierarchy of selection panels from a dialog function. The
first menu in the hierarchy is named QOPTION. Set the program variable BUFFER
to contain:
SELECT PANEL(QOPTION)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

Example 3
In a PL/I program, program variable QOPT contains ’PANEL(QOPTION)’ and
program variable QOPTL is a fullword variable containing the binary equivalent of
14. Start a hierarchy of selection panels beginning with panel QOPTION.
CALL ISPLINK ('SELECT ',QOPTL,QOPT);

Example 4
In a CLIST, invoke a program-coded dialog function named PROG1, and pass it a
parameter string consisting of ABCDEF.
ISPEXEC SELECT PGM(PROG1) PARM(ABCDEF)

Example 5
In a PL/I program, invoke a program-coded dialog function named PROG1, and
pass it a parameter string consisting of ABCDEF. Set the program variable BUFFER
to contain:
SELECT PGM(PROG1) PARM(ABCDEF)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

Example 6
In a PL/I program, program variable PROG contains ’PGM(PROG1)
PARM(ABCDEF)’ and program variable PROGL is a fullword variable containing
the binary equivalent of 23. Invoke a program-coded dialog function, named
PROG1, and pass it a parameter string consisting of ABCDEF.
CALL ISPLINK ('SELECT ',PROGL,PROG);

SETMSG – Set Next Message
The SETMSG service allows a dialog function to display a message on the next
panel that is written by ISPF to the terminal. The next panel does not have to be
displayed as a result of action taken by the function routine. In fact, the function
routine can have terminated before the next panel is displayed.

The specified message is retrieved from the message library at the time the set
message request is issued. Values for all variables defined in the message are

SELECT

Chapter 2. Description of ISPF Services 193



substituted at this time and the message is saved in a message area for the
application. When the next panel is displayed, the message is retrieved from the
save area and displayed on the panel.

If multiple set-message requests have been issued before a panel is displayed, only
the last message is displayed. You can use the optional COND parameter to
request that the specified message is to be displayed only if there is no prior
SETMSG request pending. A message specified on the panel display request is
overridden by any outstanding set next message request.

A message that has been set with SETMSG is displayed the next time any
full-screen output is sent to the display, regardless of whether that output is a
panel, table display, Browse data, or Edit data. The SETMSG service executed in
the batch environment causes the message to be written to the log at the point at
which it would normally be sent to the screen for display.

The message is preserved across CONTROL NONDISPL; that is, the message is
displayed on the next actual output to the terminal. If the next panel is processed
in non-display mode, the message remains pending, to be displayed with any
following panel that is processed in display mode.

If the message refers to a help panel, the help panel should not include
substitutable variables. Variables in related help panel(s) contain the values current
at the time the HELP command is issued, not at the time the SETMSG service is
invoked.

Command Invocation Format
ISPEXEC SETMSG MSG(message-id) [COND]

[MSGLOC(message-field-name)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('SETMSG ', message-id [,'COND ']
[,message-field-name])

Parameters
message-id

Specifies the identification of the message to be displayed on the next panel.

COND
Specifies that the message is to be displayed on the next panel only if no prior
SETMSG request is pending.

message-field-name
Used to position the message pop-up window. If the application specifies this
parameter, the Dialog Manager positions the message pop-up relative to the
named field.

If this parameter is omitted and a message is displayed in a message pop-up
window, the window is displayed at the bottom of the logical screen or below
the active ADDPOP pop-up window if one exists.

SETMSG

194 z/OS V1R2.0 ISPF Services Guide



For upward compatibility, this parameter should be specified only when the
message will display in a pop-up window.

Note: When running in GUI mode, this parameter is ignored.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

4 SETMSG with COND parameter issued and a SETMSG request was
pending.

12 The specified message field name or message not be found.

20 Severe error.

Example 1
On the next panel that is displayed, put a message whose ID, ABCX015, is in a
dialog variable named TERMSG.
ISPEXEC SETMSG MSG(&TERMSG )

Set the program variable BUFFER to contain:
SETMSG MSG(ABCX015 )

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('SETMSG ','ABCX015 ');

Example 2
The following SETMSG and DISPLAY request displays message TSTA110 in a
message pop-up window that requires a response from the end user before
interaction with the underlying panel is possible. The message pop-up window is
positioned relative to the field FLD1.
PROC 0
ISPEXEC SETMSG MSG(TSTA110) MSGLOC(FLD1)
ISPEXEC DISPLAY PANEL(A)

Using the following message definition for TSTA110
TSTA110 .WINDOW=RESP
'ENTER NUMERIC DATA'

Results in:

SETMSG

Chapter 2. Description of ISPF Services 195



Return Codes
The following return codes are possible:

0 Normal completion.

4 One or more commands in the stack could not be found in the active set of
command tables.

8 User-requested termination using the END or RETURN command.

20 Severe error.

TBADD – Add a Row to a Table
The TBADD service adds a new row of variables to a table. The new row is added
either immediately following the current row, pointed to by the current row
pointer (CRP), or is added at a point appropriate for maintaining the table in the
sequence specified in a previously processed TBSORT request. The CRP is set to
point to the newly inserted row.

The current contents of all dialog variables that correspond to columns in the table,
which were specified by the KEYS and NAMES parameters in a TBCREATE, are
saved in the row.

Additional variables, those not specified when the table was created, can also be
saved in the row. These “extension” variables apply only to this row, not the entire
table. The next time the row is updated, the extension variables must be
respecified if they are to be rewritten.

For tables with keys, the table is searched to ensure that the new row has a unique
key. The current contents of the key variables, dialog variables that correspond to
keys in the table, are used as the search argument.

For tables without keys, no duplicate checking is performed.

To improve performance when you add several rows to a table, you can specify
the MULT keyword with the number-of-rows parameter. By specifying the estimated
number of rows you expect to add to the table, you supply ISPF the information it
needs to more efficiently obtain the necessary storage for all rows when processing

PANEL A

FIELD===> FLD1
┌────────────────────┐
| |
| ENTER NUMERIC DATA |
| |
└────────────────────┘

SETMSG

196 z/OS V1R2.0 ISPF Services Guide



the first of these rows (rather than getting storage for one row at a time). The
default value for the number-of-rows parameter is one unless the value is modified
at ISPF installation.

When successive TBADD service requests with the MULT keyword are executed in
a program loop, the first request results in storage being acquired for the multiple
number of rows specified. On subsequent TBADD requests in the loop, ISPF
checks to see if enough storage remains for the current row being added. If so,
ISPF acquires no additional storage. If not, ISPF acquires additional storage as
specified by the MULT keyword.

If the first row to be added to the table includes one or more extension variables,
ISPF assumes that all rows added by the TBADD service request might include
extension variables and takes that into account when obtaining the storage for the
rows to be added.

If ISPF is unable to obtain all the storage it has estimated is needed for the number
of rows specified (or if not specified, the default number of rows), it gets storage
for one row at a time and issues a return code of four. ISPF does not issue an
informational message when this condition occurs. At any time, if there remain
rows to be added to the table and ISPF is unable to get storage for one row, a
severe error (return code 20) results.

Command Invocation Format
ISPEXEC TBADD table-name

[SAVE(name-list)]

[ORDER]

[MULT(number-of-rows)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBADD ', table-name

[,name-list]

[,'ORDER ']

[,number-of-rows]);

Parameters
table-name

Specifies the name of the table to be updated.

name-list
Specifies a list of extension variables, by name, that are to be saved in the row,
in addition to the variables specified when the table was created.

ORDER
Specifies that the new row is to be added to the table in the order specified in
the sort information record. A TBSORT must have been performed for this

TBADD

Chapter 2. Description of ISPF Services 197



table prior to use of this keyword. For tables with keys, the table is searched to
ensure that the new row has a unique key. If a row with the same key already
exists, the row is not added. This keyword is ignored if the table has never
been sorted. If this keyword is omitted, any existing sort information record is
nullified and to restore it, another TBSORT is required.

When a newly inserted row has sort field names equal to the sort field names
of an existing row, the insertion is made after the existing row.

number-of-rows
Specifies the expected total number of rows to be added to a table during one
session. This is a fullword fixed value greater than zero. The default value is
one unless changed at ISPF installation. The maximum value that can be
specified is 32 767.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

4 The number-of-rows parameter was specified but storage was obtained for
only a single row.

8 A row with the same key already exists; CRP set to TOP (zero). Returned
only for tables with keys.

12 Table is not open.

16 Numeric convert error; see numeric restrictions for TBSORT. Returned only
for sorted tables.

20 Severe error.

Example 1
Add a row to the table TELBOOK, based on the sort information record, copying
to the row values from function pool variables whose names match those of table
variables.
ISPEXEC TBADD TELBOOK ORDER

Set the program variable BUFFER to contain:
TBADD TELBOOK ORDER

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBADD ','TELBOOK ',' ','ORDER ');

TBADD

198 z/OS V1R2.0 ISPF Services Guide



Example 2
Add multiple rows to table TELBOOK.
ISPEXEC TBADD TELBOOK MULT(&ROWS)

where &ROWS is a variable containing the number of rows to be added.
ISPEXEC TBADD TELBOOK ORDER MULT(4)

where 4 is the number of rows to be added
CALL ISPLINK ('TBADD ','TELBOOK ',' ','ORDER ',ROWS);

where ROWS is a fixed binary variable containing the number of rows to be
added.
CALL ISPLINK ('TBADD ','TELBOOK ',' ',' ',8);

where 8 indicates the number of rows to be added.

TBBOTTOM – Set the Row Pointer to Bottom
The TBBOTTOM service sets the current row pointer (CRP) to the last row of a
table and retrieves the row unless the NOREAD parameter is specified.

If NOREAD is not specified, all variables in the row, including key, name, and
extension variables, if any, are stored in the corresponding dialog variables. A list
of extension variable names can also be retrieved.

Command Invocation Format
ISPEXEC TBBOTTOM table-name [SAVENAME(var-name)]

[ROWID(rowid-name)]

[NOREAD]

[POSITION(crp-name)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBBOTTOM', table-name [,var-name]

[,rowid-name]

[,'NOREAD ']

[,crp-name]);

Parameters
table-name

Specifies the name of the table to be used.

var-name
Specifies the name of a variable where a list of extension variable names

TBADD

Chapter 2. Description of ISPF Services 199



contained in the row will be stored. The list is enclosed in parentheses, and the
names within the list are separated by a blank.

rowid-name
Specifies the name of a variable in which a number that uniquely identifies the
row being accessed is to be stored. Later, this identifier can be specified in the
ROW parameter of TBSKIP to cause the CRP to be positioned to the row. This
identifier is not saved on permanent storage by TBSAVE or TBCLOSE.

NOREAD
Specifies that the variables contained in the requested row are not to be read
into the variable pool.

crp-name
Specifies the name of a variable in which the row number pointed to by the
CRP is to be stored. If the CRP is positioned to TOP, the row number returned
is zero.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Table is empty; CRP set to TOP (zero).

12 Table is not open.

16 Variable value has been truncated or insufficient space provided to return
all extension variable names.

20 Severe error.

Example
Move the current row pointer (CRP) of the table TELBOOK to the last row of the
table. From this row, store variable values into the respective function pool
variables having the same names.
ISPEXEC TBBOTTOM TELBOOK

Set the program variable BUFFER to contain:
TBBOTTOM TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBBOTTOM','TELBOOK ');

TBBOTTOM

200 z/OS V1R2.0 ISPF Services Guide



TBCLOSE – Close and Save a Table
The TBCLOSE service terminates processing of the specified table and deletes the
virtual storage copy, which is then no longer available for processing.

If the table was opened in WRITE mode, TBCLOSE copies the table from virtual
storage to the table output library. In this case, the table output library must be
allocated to a ddname of ISPTABL or defined by a LIBDEF service request before
invoking this service. When storing a table in an output library, the user can give it
a new name. .bookmark The table name used in the output library must not be an
alias name.

If the table was opened in NOWRITE mode, TBCLOSE simply deletes the virtual
storage copy.

Table output can be directed to a table output library other than the library
specified on the table output ISPTABL DD statement. The library to be used must
be allocated before table services receives control. Thus, an application can update
a specific table library. This is particularly useful for applications that need to
maintain a common set of tables containing their data.

The output table library, specified by the ISPTABL DD statement, is the default
output library. Therefore, dialogs previously written for SPF that use table services
continue to function in the same manner in ISPF as they did when running under
SPF.

A TBCLOSE request for a shared table causes the use count in the table for that
logical screen to be decremented by one. If the use count for all logical screens is
zero, the TBCLOSE service is performed. If the count is not zero, a TBSAVE service
is performed. This leaves the table available for continued processing in any screen
that still has a use count greater than zero.

Issuing a TBCLOSE with the LIBRARY parameter for a table is not related to
closing the data set allocated to that ddname. However, if the LIBDEF service with
the DATASET keyword is used to define the alternate library, the data set may be
closed and freed by deleting the corresponding LIBDEF specification.

Command Invocation Format
ISPEXEC TBCLOSE table-name [NEWCOPY|REPLCOPY]

[NAME(alt-name)]

[PAD(percentage)]

[LIBRARY(library)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBCLOSE ', table-name [,'NEWCOPY '|'REPLCOPY']

[,alt-name]

[,percentage]

[,library][reserved position];

TBCLOSE

Chapter 2. Description of ISPF Services 201

|
|
|
|
|
|
|
|
|
|
|



Parameters
table-name

Specifies the name of the table to be closed.

NEWCOPY
Specifies that the table is to be written at the end of the output library,
regardless of whether an update in place would have been successful. This
ensures that the original copy of the table is not destroyed before a
replacement copy has been written successfully.

REPLCOPY
Specifies that the table is to be rewritten in place in the output library. If the
existing member is smaller than the table that replaces it, or if a member of the
same name does not exist in the library, the complete table is written at the
end of the output library.

A comparison is made between the virtual storage size of the table and the
external size in the table output library. If there is insufficient storage to write
the table in place, it is written at the end of the table output library.

alt-name
Specifies an alternate name for the table. The table is stored in the output
library with the alternate name. If another table already exists in the output
library with that name, it is replaced. If the table being saved exists in the
output library with the original name, that copy remains unchanged.

percentage
Specifies the percentage of padding space, based on the total size of the table.
The padding is added to the total size of the table only when the table is
written as a new copy. This parameter does not increase the table size when an
update in place is performed.

This parameter must have an unsigned integer value. For a call, it must be a
fullword fixed binary integer.

The default value for this parameter is zero.

Padding permits future updating in place, even when the table has expanded
in size. Should the table expand beyond the padding space, the table is written
at the end of the table output library instead of being updated in place.

library
Specifies the name of a DD statement or LIBDEF lib-type that defines the
output library in which the table is to be closed. If specified, a generic
(non-ISPF) DD name must be used. If this parameter is omitted, the default is
ISPTABL.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

TBCLOSE

202 z/OS V1R2.0 ISPF Services Guide



12 Table is not open.

16 Alternate table output library was not allocated.

20 Severe error.

Example
Close the table TELBOOK.
ISPEXEC TBCLOSE TELBOOK

Set the program variable BUFFER to contain:
TBCLOSE TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBCLOSE ','TELBOOK ');

TBCREATE – Create a New Table
The TBCREATE service creates a new table in virtual storage, and opens it for
processing.

TBCREATE allows specification of the variable names that correspond to columns
in the table. These variables will be stored in each row of the table. Additional
“extension” variables can be specified for a particular row when the row is written
to the table.

One or more variables can be defined as keys for accessing the table. If no keys are
defined, only the current row pointer can be used for update operations.

Command Invocation Format
ISPEXEC TBCREATE table-name [KEYS(key-name-list)]

[NAMES(name-list)]

[WRITE|NOWRITE]

[REPLACE]

[LIBRARY(library)]

[SHARE]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBCREATE', table-name [,key-name-list]

[,name-list]

[,'WRITE '|'NOWRITE ']

[,'REPLACE ']

TBCLOSE

Chapter 2. Description of ISPF Services 203



[,library]

[,'SHARE ']);

Parameters
table-name

Specifies the name of the table to be created. The name can be from one to
eight alphanumeric characters in length and should begin with an alphabetic
character.

key-name-list
Specifies the variables, by name, that are to be used as keys for accessing the
table. See “name-list” on page 6 for the specification of name lists. If this
parameter is omitted, the table will not be accessible by keys.

name-list
Specifies the non-key variables, by name, to be stored in each row of the table.

If key-name-list and name-list are omitted, the table can contain only extension
variables that must be specified when a row is written to the table.

WRITE
Specifies that the table is permanent, to be written to disk by the TBSAVE or
TBCLOSE service. The disk copy is not actually created until the TBSAVE or
TBCLOSE service is invoked.

The WRITE/NOWRITE usage of a shared table must be consistent on all
TBCREATE and TBOPEN requests. That is, all requests for a given shared table
that result in concurrent use of that table must specify the same WRITE or
NOWRITE attribute.

NOWRITE
Specifies that the table is for temporary use only. When processing is complete,
a temporary table should be deleted by the TBEND or TBCLOSE service.

REPLACE
Specifies that an existing table is to be replaced. If a table of the same name is
currently open, it is deleted from virtual storage before the new table is
created, and return code 4 is issued. If the WRITE parameter is also specified
and a duplicate table name exists in the table input library, the table is created
and return code 4 is issued. The duplicate table is not deleted from the input
library. However, if TBSAVE or TBCLOSE is issued for the table, the existing
table is replaced with the current table.

A table currently existing in virtual storage in shared mode cannot be replaced.
If this is attempted, a return code of 8 results. Further, a shared table cannot be
replaced by a non-shared table, and vice versa.

library
Specifies the name of a DD statement or LIBDEF lib-type that defines the input
library. If specified, a generic (non-ISPF) DD name must be used. If this
parameter is omitted, the default input library name is ISPTLIB.

SHARE
Specifies that the created table can be shared between all logical screens while
the user is in split-screen mode. A table can be “created” by one screen only.
That is, once one screen has issued a TBCREATE SHARE for a given table,
another screen is not permitted to issue a TBCREATE for the same table.

TBCREATE

204 z/OS V1R2.0 ISPF Services Guide



A successful TBCREATE or TBOPEN request causes the use count in the table
to be incremented by one. The use count determines the action taken by
subsequent TBEND and TBCLOSE requests.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

4 Normal completion — a duplicate table exists but REPLACE was specified.

8 Either the table already exists and REPLACE was not specified, or
REPLACE was specified and the table is in SHARE mode.

12 Table in use; ENQ failed.

16 WRITE mode specified and alternate table input library not allocated.
TBCREATE checks the input library to determine if a duplicate table exists.
See return code 8.

20 Severe error.

Example 1
In a CLIST, create a permanent table, TELBOOK, to contain the variable TABKEY
and other variables, the names of which are specified in dialog variable TABVARS.
The key field is TABKEY.
ISPEXEC TBCREATE TELBOOK KEYS(TABKEY) NAMES(&TABVARS )

Example 2
In a PL/I program, create a permanent table, TELBOOK, to contain the variable
TABKEY and other variables, the names of which are specified in program variable
TABVARS. The variable TABVARS has been made accessible to ISPF by a previous
VDEFINE operation. The key field is TABKEY. Set the program variable BUFFER
to contain:
TBCREATE TELBOOK KEYS(TABKEY) NAMES(&TABVARS)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBCREATE','TELBOOK ','TABKEY ',TABVARS);

Example 3
In a PL/I program, create a permanent non-keyed table, NKTBL, where FNAME,
LNAME, PHONE, and LOC are the non-key table variables.
CALL ISPLINK ('TBCREATE','NKTBL ',' ',

'(FNAME LNAME PHONE LOC)');

TBCREATE

Chapter 2. Description of ISPF Services 205



TBDELETE – Delete a Row from a Table
The TBDELETE service deletes a row from a table.

For tables with keys, the table is searched for the row to be deleted. The current
contents of the key variables, dialog variables that correspond to keys in the table,
are used as the search argument. If the table has no keys, the row is determined by
the current position of the CRP.

For tables without keys, the row pointed to by the current row pointer (CRP) is
deleted.

The CRP is always updated to point to the row prior to the one that was deleted.

Command Invocation Format
ISPEXEC TBDELETE table-name

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBDELETE', table-name);

Parameters
table-name

Specifies the name of the table from which the row is to be deleted.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Keyed tables: The row specified by the value in key variables does not
exist; CRP set to TOP (zero). Non-keyed tables: CRP was at TOP (zero) and
remains at TOP.

12 Table is not open.

20 Severe error.

Example
Delete a row of the table TELBOOK.
ISPEXEC TBDELETE TELBOOK

Set the program variable BUFFER to contain:

TBDELETE

206 z/OS V1R2.0 ISPF Services Guide



TBDELETE TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBDELETE','TELBOOK ');

TBDISPL – Display Table Information
The TBDISPL service combines information from a panel definition with
information stored in an ISPF table. It displays all or certain rows from the table,
allowing the application user to scroll the information up and down.

When only certain rows from a table are to be displayed, the TBSARG service is
used to define the selection criteria before issuing TBDISPL. Only search
arguments established by TBSARG that specify a forward scan through the table
(for example, TBSARG specifying the keyword NEXT, either explicitly or
implicitly) should be used. In this case, ROWS(SCAN) must be specified on the
)MODEL statement in the panel definition.

TBDISPL can produce a display of a table based on a search argument that
specifies a backward scan; that is, PREVIOUS on the TBSARG request and
ROWS(SCAN) specified on the )MODEL header statement. This would display the
table from bottom to top. Top to bottom is the normal table display. However,
because TBDISPL does not support scrolling for the bottom-to-top case, scrolling
results are unpredictable.

The format of the display is specified by a panel definition, which TBDISPL reads
from the panel library. The panel definition specifies the fixed (non-scrollable)
portion and the scrollable portion of the display. The fixed portion contains the
command field and commonly the scroll amount field. It can also include other
input fields as well as text, output fields, dynamic areas and a graphic area.

The scrollable portion is defined by up to eight “model” lines. They indicate which
table fields are to be displayed.

Each line of scrollable data can have one or more input (unprotected) fields, as
well as text and output (protected) fields. The user can modify the input fields in
the scrollable or fixed portions.

Before TBDISPL is invoked, the table to be displayed must be open, such as
TBOPEN, and the current row pointer (CRP) positioned to the row at which the
display is to begin, such as TBTOP (automatic following TBOPEN), TBBOTTOM,
or TBSKIP. When CRP is pointing to the top of the table, it has a value of 0. It is
treated as though the CRP were pointing to the first row. Do not attempt to use
TBDISPL to display a command table currently in use. This might produce
unpredictable results.

The scrollable portion of the display is formed by replicating the model line(s)
from the panel definition enough times to fill the screen. Each of these replications
is known as a model set. Table rows are then read to fill in the appropriate fields
in the model set replications. Each table row corresponds to a model set.

TBDELETE

Chapter 2. Description of ISPF Services 207



The table that is displayed in a panel’s scrollable area can be built dynamically by
the application. This is useful for applications involving large amounts of data that
users might wish to access to varying extents. The application can provide a
relatively small table as a starter, then expand the table as users scroll beyond the
top or bottom table row.

When the user enters data into a model set, the corresponding table row is said to
be selected for processing. The user can select several rows. The data must be
modified to select the model set. If you simply overtype the existing model set
with the same data, the model set is not considered to be selected.

TBDISPL itself does not modify the table. The dialog function can use the
information entered by the user to determine what processing is to be performed,
and can modify the table accordingly.

TBDISPL Operation
TBDISPL allows the user to scroll the data up and down and enter information in
the input fields in the scrollable or fixed portions.

TBDISPL operation depends on whether a )REINIT or )PROC section is included in
the panel definition. When a )REINIT or )PROC section is included, and if the user
makes no modification to the screen and presses the Enter key, TBDISPL returns
control to the dialog function. On the other hand, if neither a )REINIT nor a
)PROC section is included and if the user makes no modification to the screen and
presses the Enter key, TBDISPL treats this as a “no operation” and control does not
return to the dialog function. This is for compatibility with the previous version of
the product.

During a display of a panel using TBDISPL, any of the following user actions will
result in control returning to the dialog function:
v Typing no input and pressing the Enter key, assuming that a )REINIT or )PROC

section exists in the panel definition
v Typing data into the fixed or scrollable portion of the display and pressing the

Enter key
v Typing data into the fixed or scrollable portion of the display and entering the

UP or DOWN command
v Entering the END or RETURN command
v Scrolling UP or DOWN with scroll return to function defined and not enough

table rows to handle the scroll request.

Operational Results From User Actions
The following user actions will not result in control returning to the dialog
function:
v Typing no input and pressing the Enter key (assuming that neither a )REINIT

nor a )PROC section exists in the panel definition).
v Typing no input and entering the UP or DOWN command. This is true if scroll

return to function is not defined, but there are enough rows to satisfy the scroll
request.

v Entering a system command other than UP, DOWN, END, or RETURN. For
example, HELP, SPLIT, or CURSOR.

v Entering an application command that SELECTs another dialog.

TBDISPL

208 z/OS V1R2.0 ISPF Services Guide



After display of a panel using TBDISPL, and before control returns to the dialog
function, the following occurs:
1. The contents of all input fields in the fixed portion are stored in the dialog

variable specified in the panel definition.
2. If there were no selected rows to process, the CRP is set to TOP (zero). If scroll

return to function is defined and rows are needed to satisfy the scroll request,
the scroll return system variables are set in the function pool.

3. If there were any selected rows, the CRP is positioned to the first of these, and
the row is retrieved from the table. The values of all variables from that row
are stored into the corresponding dialog variables. All input fields in the
selected model set on the display are then stored in the corresponding dialog
variables. The input fields can or cannot correspond to variables in the table.
Variable ZTDSELS contains the number of rows that were selected. The value
of ZTDSELS can be checked in the )PROC section of the panel definition, or it
can be checked by the dialog function.

4. The row number that corresponds to the first model set currently displayed on
the screen is stored in the system variable ZTDTOP. If, in a dialog, a dialog
developer wants to reposition the scrollable data as the user last saw it, he must
reposition the CRP to the row number stored in ZTDTOP prior to reinvoking
the TBDISPL service with the panel name specified. This is not necessary if the
panel name is not specified.

ZTDTOP and ZTDSELS Variables
ZTDTOP and ZTDSELS are variables in the function pool. A command procedure
can access them directly. A program can access them through use of the VDEFINE
or VCOPY service. If a program function uses the VCOPY service to access the
variable, the value will be in character string format. It will not be in fixed binary
format.

If the application user selected more than one row in a single interaction, the
variable ZTDSELS is 2 or greater, which indicates that selected rows remain to be
processed. These rows are called pending selected rows. A call to TBDISPL is
required to position the CRP to each pending selected row, retrieve the row from
the table, and store input fields from the corresponding model set. After the CRP is
positioned to each selected row, the function can process the row, for example, by
issuing a TBPUT request to update the table. For these calls, neither the
panel-name nor the message-id should be specified. The processing sequence for
each of these calls is as described above, except that the next selected row is
processed.

Whenever selected rows remain to be processed, the dialog can choose to ignore
them by calling TBDISPL with a specified (non-blank) panel name. This clears out
any remaining information about previous calls. If the dialog wants to display
another screen before processing pending selected rows from the first display, it
must invoke the CONTROL service to save and restore the display environment.

Note: Table display service system variables, ZTD*, are not saved as part of the
CONTROL DISPLAY SAVE/RESTORE information. The values of these
variables may be saved by the dialog developer and restored prior to
resuming the processing of the initial table display.

Command Invocation Format
ISPEXEC TBDISPL table-name [PANEL(panel-name)]

[MSG(message-id)]

TBDISPL

Chapter 2. Description of ISPF Services 209

|
|
|
|
|

|
|
|
|

|



[CURSOR(field-name)]

[CSRROW(table-row-number)]

[CSRPOS(cursor-position)]

[AUTOSEL(YES|NO)]

[POSITION(crp-name)]

[ROWID(rowid-name)]

[MSGLOC(message-field-name)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBDISPL ', table-name [,panel-name]

[,message-id]

[,field-name]

[,table-row-number]

[,cursor-position]

[,'YES '|'NO ']

[,crp-name]

[,rowid-name]

[,message-field-name]);

Parameters
table-name

Specifies the name of the table to be displayed.

panel-name
Specifies the name of the panel to be displayed.

message-id
Specifies the identification of a message to be displayed on the panel.

field-name
Specifies the name of the field where the cursor is to be placed on the display.
Any setting of the .CURSOR control variable done in the panel definition takes
precedence over this parameter.

table-row-number
Specifies the table row number (CRP number) corresponding to the model set
on the display where the cursor is to be placed. For a call, this parameter must
be a fullword fixed binary number.

Specifying the CSRROW parameter without specifying AUTOSEL(NO) results
in the row being retrieved, even if the user did not explicitly select the row.
This is called auto-selection.

TBDISPL

210 z/OS V1R2.0 ISPF Services Guide



If the specified row does not have a corresponding model set in the logical
table display (the logical table display includes model sets not displayed
because of split-screen, PFSHOW, or floating command line), the cursor is
placed at the command field. No auto-selection is performed.

Any setting of the .CSRROW control variable done in the panel definition takes
precedence over this parameter.

cursor-position
Specifies the position within the field where the cursor is to be placed. This
position applies regardless of whether the initial cursor placement was
specified in the CURSOR calling sequence parameter, the .CURSOR control
variable in the )INIT or )REINIT section of the panel, or is the result of default
cursor placement. If cursor-position is not specified or is not within the field,
the default is 1.

Any setting of the .CSRPOS control variable done in the panel definition takes
precedence over this parameter.

AUTOSEL( YES |NO)
YES specifies that if the CSRROW(table-row-number) parameter is specified or
if .CSRROW is set within the )INIT or )REINIT section, the row is to be
retrieved, even if the user did not explicitly select the row. This is known as
auto-selection.

NO specifies that even if the CSRROW(table-row-number) parameter is
specified or if .CSRROW is set within the )INIT or )REINIT section, the row is
to be retrieved only if the user explicitly selects the row by entering data into
the corresponding model set.

If the CSRROW parameter or the .CSRROW control variable is not specified,
the AUTOSEL parameter is ignored.

Any setting of the .AUTOSEL control variable done in the panel definition
takes precedence over this parameter.

crp-name
Specifies the name of a variable in which the row number pointed to by the
CRP is to be stored. If the CRP is positioned to TOP, the row number returned
is zero.

rowid-name
Specifies the name of a variable in which a number that uniquely identifies the
row being accessed is to be stored. Later, this identifier can be specified in the
ROW parameter of TBSKIP to cause the CRP to be positioned to the row. This
identifier is not saved on permanent storage by TBSAVE or TBCLOSE.

message-field-name
Used to position the message pop-up window. If the application specifies this
parameter, the Dialog Manager positions the message pop-up relative to the
named field.

If this parameter is omitted and a message is displayed in a message pop-up
window, the window is displayed at the bottom of the logical screen or below
the active ADDPOP pop-up window if one exists.

For upward compatibility, this parameter should be specified only when the
message will display in a pop-up window.

Note: When running in GUI mode, this parameter is ignored.

TBDISPL

Chapter 2. Description of ISPF Services 211



buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Parameter Processing
The panel-name and message-id parameters are optional. Their processing is as
follows:
v If panel-name is specified and message-id is not specified, the panel definition is

retrieved, rows from the table are read, starting at the CRP, to fill the screen, and
the screen is displayed without a message. Any information from previous
TBDISPL calls, such as pending scroll requests or pending selected rows, is
cleared.

v If panel-name and message-id are both specified, the panel definition is
retrieved, rows from the table are read to fill the screen, and the screen is
displayed with the specified message.

v If panel-name is not specified and message-id is specified, the current table
display is overlaid with a message, without rebuilding the screen or rereading
the table.

v If neither panel-name nor message-id is specified, the processing depends on
whether there are selected rows remaining to be processed. If no selected rows
remain to be processed, the following occurs: If the application user’s last action
was to:
– Press the Enter key, then rows from the table are again read to fill the screen

and the screen is redisplayed.
– Enter a scroll command, then the scroll function is now honored by reading

and displaying the appropriate rows from the table.
– Enter an END or RETURN command, then the CRP is set to TOP (zero) and

control returns to the function issuing the TBDISPL with a return code of 8. If
this occurs more than once in immediate succession, a return code of 20 is
issued, since the application can be in a loop.

If there are selected rows remaining to be processed, the CRP is positioned to
the first of these, the row is retrieved from the table, and input fields from the
selected model set are stored.

Use the CONTROL service to save and restore the environment when a TBDISPL
series, in which panel-name is not specified, is to be interrupted by another
TBDISPL, DISPLAY, BROWSE, or EDIT operation.

The CURSOR and CSRROW parameters are optional. Their processing is as
follows:
v If the CURSOR parameter is not specified but the CSRROW parameter is

specified, the cursor is placed on the first field in the specified row. .bookmark
v If the CURSOR parameter is specified, but the CSRROW parameter is not

specified or is specified with a value of zero, the current value of the CRP
determines the row location, and the cursor is placed in this row on the field
specified by the CURSOR parameter. A value of zero in the CRP places the
cursor on the command line.

v If neither the CURSOR nor the CSRROW parameter is specified, the cursor is
placed at the command field.

TBDISPL

212 z/OS V1R2.0 ISPF Services Guide



v If both the CURSOR and CSRROW parameters are specified, the cursor is placed
at the field specified by the CURSOR parameter within the model set
corresponding to the table row specified by the CSRROW parameter.

v Whenever the CSRROW parameter is specified without specifying
AUTOSEL(NO), the row is retrieved, even if the user did not modify that row.
This allows the dialog developer to force the user to correct an error on that row
before going on to process other rows.

v Any setting of the .CURSOR and the .CSRROW control variables done in the
panel definition takes precedence over the CURSOR and CSRROW parameters.

Return Codes
The following return codes are possible:

0 If the panel definition contains neither a )REINIT nor a )PROC section, the
Enter key was pressed, or a scroll command was entered. Any of the
following occurred:
v One row was selected in the scrollable part of the display. The CRP is set

to point to that table row and the row is retrieved. The input fields from
the selected model set on the display are then stored in the function
pool.

v The user entered information into the fixed portion of the display.
v All of the following:

– A scroll return to function has been specified (ZTDRET defined to UP,
DOWN, or VERTICAL).

– More rows are needed to fill a scroll request.
– No selected rows remain to be processed.

If the panel definition contains a )REINIT or )PROC section, there is the
additional possibility that the user entered no information and just pressed
the Enter key.

4 The Enter key was pressed or a scroll command was entered. The first or
both of the following occurred:
v Two or more rows in the scrollable part of the display were selected. The

CRP is set to the first selected row and the row is retrieved. The input
fields from the selected model set on the display are then stored in the
function pool.

v The user entered information into the fixed portion of the display.
v If scroll return to function has been specified, and two or more rows are

selected for processing, TBDISPL returns a return code 4 until all
selected rows are processed. You process the request for more rows to be
added to the table only after all selected rows have been processed; that
is, only when ZTDSELS has a value of 0.

For subsequent TBDISPL requests with no panel name and no message-id,
return code 4 is issued for each request until one selected row remains to
be accessed. For this last row, a return code of zero is issued by TBDISPL,
still specified with no panel name and no message-id. The variable
ZTDSELS will have a value of one.

8 The END or RETURN command was entered. For panels created by the
conversion utility, CANCEL and EXIT commands also give return code 8.
If CANCEL and EXIT is requested from a panel displayed using TBDSPL
service calls and the panel was defined with dialog tag language (DTL),

TBDISPL

Chapter 2. Description of ISPF Services 213



the dialog manager returns the command in ZVERB and sets a return code
of 8 from the display screen. The CRP is set to the first of any selected
rows in the scrollable part of the display. The input fields from the selected
model set on the display are then stored in the function pool.

If no rows were selected, the CRP is at the top (zero).

To process all selected rows when END or RETURN was entered, continue
to issue TBDISPL requests with no panel name or message-id specified
until ZTDSELS is one.

If you enter the END command on a table display panel, a subsequent
redisplay will result in a return code of 8.

The user might have entered information into the fixed portion of the
display.

12 The specified panel, message, cursor field, or message location field could
not be found.

16 Truncation or translation error in storing defined variables.

20 Severe error.

Example
Display the table TELBOOK using panel definition TPANEL2 to format the display.
ISPEXEC TBDISPL TELBOOK PANEL(TPANEL2)

Set the program variable BUFFER to contain:
TBDISPL TELBOOK PANEL(TPANEL2)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBDISPL ','TELBOOK ','TPANEL2 ');

System Variables Related to TBDISPL
If a program function uses the VCOPY service to access a variable, the value will
be in character string format. It will not be in fixed binary format.

System variables used with TBDISPL processing are:

ZTDMARK
Specifies an alternate bottom-of-data marker. ZTDMARK is created by the
dialog and can reside in any variable pool. It is an input variable, whose
length can be equal to or less than the screen width. If ZTDMARK exists,
its value is used as the marker. If ZTDMARK does not exist, the default
marker of “BOTTOM OF DATA” with asterisks on each side is used.

For example, the following assignment could be made in the )INIT section
of a table display panel:
&ZTDMARK = '----> End of Data <----'

ZTDMARK can be blank. That is, an assignment such as
&ZTDMARK = ' '

TBDISPL

214 z/OS V1R2.0 ISPF Services Guide



is valid. In this case a bottom-of-data marker would not appear on the
screen.

ZTDMSG
Specifies the ID of a message to be used as an alternate top-row-displayed
indicator. ZTDMSG is created by the dialog and can reside in any variable
pool. It is an input variable whose length is 8.

If ZTDMSG exists, TBDISPL invokes the GETMSG service to get the short
message and long message text. If the short message exists and is
non-blank, it is used as the top-row-displayed indicator. If the short
message doesn’t exist, the long message text is used as the
top-row-displayed indicator. In both cases, the current values of any
variables in the message are placed in the message and the text is placed
right-justified on the top line of the display.

If ZTDMSG does not exist, the long form of message ISPZZ100 is used.

The text used for the top-row-displayed indicator is summarized in the
ISPF Dialog Developer’s Guide and Reference

A message ID, whose short and long message text is blank (’ ’), or the null
variable (&Z) can be assigned to ZTDMSG. In this case, the table display
would not have a top-row-displayed indicator.

No top row is displayed if the user attempts to:
v Display an empty table
v Scroll past the bottom row
v Specify no rows matching the TBSARG criteria and ROWS(SCAN) is specified

on the )MODEL statement of the panel definition.

In this case, message ISPZZ101 is used for the top-row-displayed indicator. This
has no short message text, and the long message text is ’&Z’.

ZTDROWS
Created by TBDISPL to indicate the number of rows in the table most
recently displayed. It resides in the function pool. It is an output variable
whose length is 6. Unless it has been defined otherwise by a program
function, ZTDROWS is 6 characters long and will have leading zeros, if
necessary.

ZTDSELS
Created by TBDISPL to indicate the number of selected rows. It includes
the current selected row, if one exists, and any pending selected rows.
ZTDSELS resides in the function pool. It is an output variable whose
length is 4. Unless it has been defined otherwise by a program function,
ZTDSELS is 4 characters long and will have leading zeros if necessary.

ZTDTOP
Created by TBDISPL to indicate the table row number of the top row
displayed. ZTDTOP resides in the function pool. It is an output variable
whose length is 6. Unless it has been defined otherwise by a program
function, ZTDTOP is 6 characters long and will have leading zeros if
necessary.

System variables ZTDRET, ZTDADD, ZTDSCRP, ZTDLTOP, ZTDLROWS,
ZTDSRID, ZTDAMT, and ZTDSIZE are used exclusively when dynamically
building the table being displayed.

TBDISPL

Chapter 2. Description of ISPF Services 215



Table display service system variables, ZTD*, are not saved as part of the
CONTROL DISPLAY SAVE/RESTORE information. The values of these variables
may be saved by the dialog developer and restored prior to resuming the
processing of the initial table display. Also, the ZVERB is not saved.

Panel Control Variables Related to TBDISPL
Control variables used with TBDISPL processing are as follows:

.AUTOSEL
The variable version of the AUTOSEL parameter. It can be assigned “YES”,
“NO”, or a blank in the )INIT or )REINIT sections. Any assignment made
to .AUTOSEL in the )PROC section is ignored.
v YES indicates that auto-selection should be performed if the CSRROW

parameter is specified and the user does not explicitly select the row.
v NO indicates that auto-selection should not be performed.
v Specifying a blank value is the same as specifying YES, with one

exception: if there are no input fields in the model lines, auto-selection
will occur only if YES is explicitly specified.

Any setting of this variable takes precedence over the AUTOSEL
parameter.

.CSRROW
The variable version of the CSRROW parameter. It can be assigned the
table row number (CRP number) corresponding to the model set on the
display where the cursor is to be placed. Any setting of this variable takes
precedence over the CSRROW parameter.

Parameter Variables Related to TBDISPL
Variable names can be specified as TBDISPL parameters, as follows:

POSITION(crp-name)
Specifies the name of the variable in which TBDISPL is to store the row
number (CRP number) of the current selected row. If there are no selected
rows, the CRP will be at the top and the row number returned is zero.

ROWID(rowid-name)
Specifies the name of the variable in which TBDISPL is to store the rowid
of the current selected row.

The difference between a CRP number and a rowid is as follows:
v A CRP number is an ordinal number; that is, the first row has a CRP number of

00000001, the second row has a CRP number of 00000002, and so on. CRP
numbers are associated with “slots” in a table, rather than particular rows. If a
new row is inserted after the first row, that new row now has a CRP number of
00000002. What had been row 00000002 is now row 00000003, what had been
row 00000003 is now row 00000004, and so on.

v A rowid is a nominal value that uniquely identifies a row. This value stays with
the row, even if the row has other rows inserted before it. Note, however, that
this identifier is not saved on permanent storage by the TBSAVE or TBCLOSE
service.

Using TBDISPL with Other Services
Consider the following items when using TBDISPL with other services:
1. CONTROL DISPLAY LOCK

TBDISPL

216 z/OS V1R2.0 ISPF Services Guide

|
|
|
|



This service specifies that the next display output is to leave the user’s
keyboard locked as the panel is displayed, and ISPF is to simulate an ENTER.
This facility can be used to generate crude animation or display an “in process”
message during a long-running operation.
Table displays done in conjunction with this service should display panels that
have a )REINIT or )PROC section. Otherwise, the simulated ENTER is treated
as a no-operation, as described under “TBDISPL Summary” on page 229.

2. CONTROL DISPLAY SAVE and CONTROL DISPLAY RESTORE
If the dialog wants to invoke a display service (BROWSE, EDIT, DISPLAY,
another TBDISPL) before processing pending selected rows, it must invoke the
CONTROL DISPLAY service to save and restore the current TBDISPL series
environment.
The dialog should invoke CONTROL DISPLAY SAVE before the non-TBDISPL
series display service and CONTROL DISPLAY RESTORE after the
non-TBDISPL series display service. For example:

Service Description

TBOPEN TAB1 Open the table

TBDISPL TAB1 PANEL(PAN1)
Display the table and panel

CONTROL DISPLAY SAVE Save control information about PAN1

DISPLAY PANEL(PAN2) Display a second panel

DISPLAY PANEL(PAN3) Display a third panel

CONTROL DISPLAY RESTORE
Restore control information about PAN1

TBDISPL TAB1 Reinvoke TBDISPL to process the next selection
or redisplay the table and panel

CONTROL DISPLAY SAVE Again save control information about PAN1

DISPLAY PANEL(PAN2) Display the second panel again

DISPLAY PANEL(PAN3) Display the third panel again

CONTROL DISPLAY RESTORE
Again restore control information about PAN1

TBDISPL TAB1 Reinvoke TBDISPL to process the next selection
or redisplay the table and panel

3. BROWSE, EDIT, and DISPLAY
See item 2.

4. Command Tables
Do not attempt to use TBDISPL to display a command table currently in use.
The results would not be predictable.

5. TBSARG
When only certain rows from a table are to be displayed, the TBSARG service
must be invoked before issuing TBDISPL to establish a search criteria. The
search criteria should specify a forward scan through the table. In this case,
ROWS(SCAN) must be specified on the )MODEL statement in the panel
definition.

6. TBSORT

TBDISPL

Chapter 2. Description of ISPF Services 217



The TBSORT service can be used freely with the TBDISPL service, even during
a TBDISPL series. Note, however, that the pending selected rows will be
processed in their original order; that is, in the order they would have been
processed had the dialog not invoked the TBSORT service.

Techniques for Using the TBDISPL Service
The following techniques can be applied in programs and command procedures
using the TBDISPL service.
1. Displaying Only Certain Rows

When only certain rows from a table are to be displayed, the TBSARG service
must be invoked before issuing TBDISPL to establish a search criteria. The
search criteria should specify a forward scan through the table. In this case,
ROWS(SCAN) must be specified on the )MODEL statement in the panel
definition.

2. Displaying Table Extension Variables
As TBDISPL creates the scrollable portion of the display, it reads rows from the
table and fills in fields in the model sets with their current values. If a field in a
model line is an “extension” variable in the table and does not exist in all rows,
TBDISPL repeats its value in model sets to which it does not apply. To prevent
this, use the CLEAR(var-name, var-name, ...) keyword on the )MODEL
statement. This keyword sets to blank the specified variables before each row is
read from the table to fill the scrollable portion.

3. Clearing Already-Processed Select Fields
As the TBDISPL service is reinvoked to process pending selected rows, the
dialog may set to blank the select field for successfully processed rows. This is
useful in case there is a redisplay with an error message. The already processed
select fields will be blank and the not-yet-processed select fields will still have
the user-entered data in them.
Having the following statements in the )REINIT section of the panel definition
could achieve this:
If (.msg=' ')

&Select=' '
Refresh(Select)

where “Select” represents the name of any field in the panel that the dialog
wants to clear. The three statements shown above could be on one line. For
example:
If (.msg=' ') &Select=' ' Refresh(Select)

4. Using Auto-Selection
Consider the following situation:
v The user has entered invalid data in the select field.
v The panel is redisplayed with an error message.
v The user doesn’t change the invalid data but performs some action that

results in control returning to the dialog function.

The model set with the invalid data was not user-selected. If the dialog wants
to ensure that the user corrects the invalid data, it should use auto-selection in
this situation. That is, the CSRROW parameter or control variable should be
specified, and the AUTOSEL parameter or control variable should be blank or
YES. This will result in the specified row being selected even if the user did not
explicitly select it by modifying the corresponding model set on the display.

TBDISPL

218 z/OS V1R2.0 ISPF Services Guide



The auto-selection feature is normally used when the cursor is placed at invalid
data in the scrollable portion and there is an error message displayed. It is not
used when the cursor is placed in the scrollable portion for informational
purposes.

If the auto-selected row is not displayed on the logical screen because of split
screen, PFSHOW, or a floating command line, the cursor is placed at the
command field. The dialog should ensure that the user is aware of the
auto-selected row by issuing a message when specifying table-row-number.

5. Controlling the Top Row Displayed
As discussed previously, the user can issue the UP or DOWN command to
scroll during a TBDISPL display. Scrolling changes the row that is displayed at
the top of the scrollable portion. This topic discusses how the dialog function
controls the top row displayed.
In a typical table display dialog, the TBDISPL service is invoked repeatedly in a
loop. The first call results in a display (“the first display”). Subsequent calls can
produce a display (“subsequent displays”) or can process pending selected
rows (“no display”).
Controlling the Top Row Displayed in a “First Display”
The TBDISPL service must be invoked with the PANEL parameter specified to
obtain a “first display”. In this case, the current row is the top row displayed.
For convenience, a table with its CRP at TOP is treated as though the current
row was row 1. The dialog can use any of the services that move the CRP, such
as TBSKIP or TBTOP, to make the desired table row the current row.
Controlling the Top Row Displayed in a “Subsequent Display”
There are three ways to produce a “subsequent display”:
a. Invoke TBDISPL with the PANEL parameter specified.
b. Invoke TBDISPL without the PANEL parameter specified, but with the MSG

parameter or .MSG control variable specified.
c. Invoke TBDISPL without the PANEL parameter specified and without the

MSG parameter, or .MSG control variable, specified when there are no
pending selected rows.

In the first case, the current row is the top row displayed. The system variable
ZTDTOP contains the row number of the top row displayed on the previous
TBDISPL display. The following technique can be useful to control the top row
displayed:
TBTOP table /* Set CRP to TOP */
TBSKIP table NUMBER(&ZTDTOP) /* Set CRP to previous */

/* top row displayed */
VGET (ZVERB ZSCROLLN) /* Retrieve variables */
Select /* Determine Case */
When &ZVERB = 'UP' Then /* - When scroll UP req */
TBSKIP table NUMBER(-&ZSCROLLN)/* skip back toward top */
When &ZVERB = 'DOWN' Then /* - When scroll DOWN req*/
TBSKIP table NUMBER(&ZSCROLLN) /* skip forward */
Otherwise /* - Otherwise, not a */
End /* scroll request */

/* */
TBDISPL table PANEL(panel) /* Disp the table and pnl*/

In the second case, the top row displayed is the same as that displayed on the
previous display. That is, the previous image is “redisplayed” as the user last
saw it, except that the specified message is also shown. Certain fields can have
been refreshed and the cursor can be in a different place.

TBDISPL

Chapter 2. Description of ISPF Services 219



In the third case, any pending scroll request is honored. That is, if the user had
entered any data and issued a scroll request on a previous TBDISPL display,
that scroll request is now honored. If no scroll request was pending, the top
row displayed is whatever it was on the previous display.

6. Using Variable Model Lines
Model lines can be specified dynamically through the use of variable model
lines. That is, the attribute characters and field names are not specified in the
model section. Instead, a variable whose value contains the attribute characters
and field names is specified in column one of the model line.

Rules Applying to Variable Model Lines
Here are some rules that apply to variable model lines:
v The variable must begin in column 1.
v The variable must be the only data on the model line.
v The length of the value of the variable must not be greater than the screen

width.
v The variable must be initialized before the panel is displayed. It is not acceptable

to initialize the variable in the )INIT section of the panel definition.
v Changes to the variable that occur within the panel or dialog function are not

honored until TBDISPL is invoked again with a non-blank panel name.
v A variable whose value is blank is acceptable.
v If the variable contains the character string “OMIT” in uppercase, lowercase, or

in mixed case, starting in column one, then that variable model line will not be
used.

v There can be from one to eight model lines. Some can be variable model lines
and others can be explicitly specified.

v “Z” variables used as name placeholders are acceptable in variable model lines.
Be sure to assign an appropriate value to .ZVARS in the )INIT section.

Figure 9 on page 221 is the panel definition for a panel named VARMOD. Figure 10
on page 222 and Figure 11 on page 222 are two possible types of TBDISPL displays

using panel VARMOD.

TBDISPL

220 z/OS V1R2.0 ISPF Services Guide



Before panel VARMOD is displayed, the dialog function must initialize the variable
model lines as follows:

This panel is designed to be displayed in a loop. That is, the TBDISPL service is
invoked repeatedly to display the table and panel until the user enters the END or
RETURN command.

When the panel is displayed, the user can set the “Show Address?” field (QAD) to
YES or NO. If this field is NO (the default), only one model line is used, which
shows the customer’s account number and name. If this field is YES, three model
lines are used. The first remains unchanged; the second is the customer’s street
address, city, and state; and the third contains divider lines. Also, the variable
&TITLE2, which appears in the )BODY section, is set to a non-blank value. This is
used as part of the column heading for the scrollable portion.

)Attr
| Type(input) Intens(high) Just(left) Caps(on) Pad('')
$ Type(&type ) Intens(low ) Just(left) Caps(off) Padc('_')
ø Type(&type ) Intens(low ) Just(left) Caps(on) Padc('_')

)Body Expand(//)
%--/-/-- Customer Information --/-/--
%Command ===>_cmdfld / / +Scroll ===>_amt +
+
+ Show Address? ==>_QAD+(Yes or No)
+ Allow Update? ==>_QUP+(Yes or No)
+
%Select
%Code Account Name &TITLE2
)Model
&MDL1
&MDL2
&MDL3
)Init

&amt=page
If (&QAD=' ') &QAD=NO
If (&QUP=' ') &QUP=NO
If (&QUP='YES') &TYPE='Input'
If (&QUP='NO') &TYPE='Output'
If (&QAD='YES') .ZVARS='(State)'

)Proc
&QAD = Trans(Trunc(&QAD,1) Y,YES N,NO ' ',NO *,*)
Ver(&QAD,List,YES,NO)
&QUP = Trans(Trunc(&QUP,1) Y,YES N,NO ' ',NO *,*)
Ver(&QUP,List,YES,NO)

If (&QAD='YES')
&TITLE2='and Address'
&MDL1='|SCODE+øAccount+ $Name +'
&MDL2=' $Address +

$City + øZ +'
&MDL3='%================================+

==============================================='
If (&QAD='NO')

&TITLE2=' '
&MDL1='|SCODE+øAccount+ $Name +'
&MDL2='OMIT'
&MDL3='OMIT'

)End

Figure 9. Variable Model Lines – Panel Definition

&MDL1='|SCODE+øAccount+ $Name +'
&MDL2='OMIT'
&MDL3='OMIT'

TBDISPL

Chapter 2. Description of ISPF Services 221



----------------------------- Customer Information ----------------- ROW 1 OF 8
Command ===> Scroll ===>
Show Address? ==> NO (Yes or No)
Allow Update? ==> NO (Yes or No)

Select
Code Account Name
'' KC10001 Rogers, Kelly
'' KC10002 Holloway, Rich
'' KC10003 Holmes, Karen
'' KC10004 Jones, Ann
'' KC10005 Donavan, Harold
'' KC10006 Bentley, Chris
'' KC10007 Seabold, Matthew
'' KC10007 Fitzgerald, Therese
******************************* BOTTOM OF DATA *********************************

Figure 10. Variable Model Lines – Display 1

----------------------------- Customer Information ----------------- ROW 1 OF 8
Command ===> Scroll ===>
Show Address? ==> NO (Yes or No)
Allow Update? ==> NO (Yes or No)

Select
Code Account Name and Address
'' KC10001 Rogers, Kelly

253 Main St Junction City KS
===============================================================================
'' KC10002 Holloway, Rich

2810 Curtis Lane Long Beach CA
================================================================================
'' KC10003 Holmes, Karen

3600 Chestnut St Hyannis MA
================================================================================
'' KC10004 Jones, Ann

212 Fallon Ave North Hudson NY
================================================================================
'' KC10005 Donavan, Harold

180 Berthold Ave Baton Rouge LA

Figure 11. (Part 1 of 2). Variable Model Lines – Display 1

TBDISPL

222 z/OS V1R2.0 ISPF Services Guide



Panel definition VARMOD has a number of features besides variable model lines:
v It is in mixed case to improve readability.
v The TYPE attribute of the fields ACCOUNT and NAME, as well as ADDRESS,

CITY, and STATE, when they are shown, is a variable. When the user sets the
“Allow Update?” field (QUP) to NO (the default), the customer information
fields (ACCOUNT, NAME, ...) become output fields. That is, they are protected
and cannot be updated.
When the “Allow Update?” field is set to YES, the customer information fields
become input fields. The user could then update the displayed information and
the dialog function would update the table.

v The title line makes use of the expand character defined on the )BODY
statement. This is a convenient way to center the title text. The command line
also uses the expand character.

v Many of the lines in the executable sections, here the )INIT and )PROC sections,
have more than one statement in them. This saves space and improves
readability.

v The first two assignments of &MDL2 and &MDL3 make use of the continuation
character “+”. This is convenient to use when assigning long strings to a
variable.

An Example of Using the TBDISPL and TBPUT Services
This topic describes the use of the TBDISPL and TBPUT services in a dialog that
displays rows of a table for possible modification by a user.

This dialog invokes the TBDISPL service to display a table named TAB1 with a
panel named PAN1. The )BODY section of the panel definition corresponds to the
fixed (non-scrollable) portion of the display. The )MODEL section of the panel
definition corresponds to the scrollable portion of the display. This is where the
table rows are displayed. The “model lines” in the )MODEL section are replicated

================================================================================
'' KC10006 Bentley, Chris

South Mountain Pass Ashland NH
================================================================================
'' KC10007 Seabold, Matthew

42 Dragonica Way Newark DE
================================================================================
'' KC10008 Fitzgerald, Therese

67 Waimea Blvd Naalehu HI
================================================================================
******************************* BOTTOM OF DATA *********************************

Figure 12. (Part 2 of 2). Variable Model Lines – Display 2

TBDISPL

Chapter 2. Description of ISPF Services 223



enough times to fill the screen. Each of these replications is known as a model set,
and corresponds to a row of the table. The fields in the model sets correspond to
table columns.

Changes the user wishes to make in TAB1 are entered on the display directly into
fields in the model sets. When the user enters data into a model set, the
corresponding table row is said to be selected for processing.

After the user selects one or more rows, the TBDISPL service locates the first
selected row and retrieves it. To retrieve a row means to position the CRP to that
row, read it, and then store the row values into the function pool. Next, values
from the changed model set are stored in the function pool.

The dialog function then invokes the TBPUT service to write the updated function
pool variables to the table row. A user can also enter data, such as function
commands, into the fixed portion of the display.

The user ends the dialog by entering the END or RETURN command.

This example does not illustrate:
v Logic to insert or delete rows in the table
v Verification of user-entered data by the dialog function or by the )PROC section

in the panel definition
v Controlling cursor placement on the display
v Controlling which is the top row displayed.

The function can be started by a user at a terminal by the ISPSTART command. If
the user has already started ISPF, the function can be started from:
v A menu
v The command field in any display with an application command that is defined

in the current command table to have the SELECT action
v Another function by using the SELECT service.

What follows is first a listing of the complete function, followed by each statement
repeated, with supporting text and figures.

Command Procedure Function
1. TBOPEN TAB1 WRITE
2. Set &RC = 0
3. Do while &RC < 8
4. TBDISPL TAB1 PANEL(PAN1)
5. Set &RC = return code
6. Process fixed portion input
7. Do while &PROCFLAG = ON
8. Process scrollable portion input TBPUT TAB1
9. If &ZTDSELS > 1 Then

10. TBDISPL TAB1
11. Else
12. Set &PROCFLAG = OFF
13. End

TBDISPL

224 z/OS V1R2.0 ISPF Services Guide



14. End
15. TBCLOSE TAB1

Description of Function Steps
1. TBOPEN TAB1 WRITE

Open the table. Read table TAB1 into virtual storage for update. The contents
of table TAB1 are shown in Figure 13.

2. Set &RC = 0
Create a variable that will hold the return code from the TBDISPL service. In
this example, the variable is called “RC”. Initialize it to zero so that it will
enter the loop in step 3.

3. Do while &RC < 8
Start the main loop. This will keep invoking TBDISPL to display the table
until the user enters the END or RETURN command.

4. TBDISPL TAB1 PANEL(PAN1)
Display information from table TAB1 on panel PAN1. The current row, which
is the row the CRP is pointing to, will be the top row displayed. If the CRP is
at the top (CRP number zero), then the first row of the table will be the first
row displayed. The display, as it appears at the terminal, is shown in
Figure 14 on page 226. Format of the display is controlled by a panel definition
named PAN1, shown in Figure 15 on page 226. TBDISPL, besides displaying
the table, allows the user to scroll up and down the scrollable data in the
display.

EMPSER LNAME FNAME I PHA PHNUM
------ ------ ------ -- ---- ------

598304 Robertson Richard P 301 840-1224
172397 Smith Susan A 301 547-8465
813058 Russell Charles L 202 338-9557
395733 Adams John Q 202 477-1776
502774 Kelvey Ann A 914 555-4156

Figure 13. Five Rows in Table TAB1

TBDISPL

Chapter 2. Description of ISPF Services 225



Control will be returned to the dialog function when the user does one of the
following:
v Presses the Enter key. The user may or may not have typed data into the

fixed or scrollable portion of the screen.
An exception to this condition occurs if all of the following were true:
– The user typed no data into the fixed portion of the screen.
– The user typed no data into the scrollable portion of the screen.
– The user pressed the Enter key.
– Panel PAN1 had neither a )REINIT nor a )PROC section. PAN1 does in

fact have a )PROC section.

----------------------------- Employee List ------------------------ ROW 1 OF 5
Command ===> Scroll ===> PAGE

Notes ==>
Make changes to any information except Employee Serial:

------ Employee Name -------- --- Phone --- Employee
Last First MI Area Number Serial

Robertson Richard P 301 840-1224 598304
Smith Susan A 301 547-8465 172397
Russell Charles L 202 338-9557 813058
Adams John Q 202 477-1776 395733
Kelvey Ann A 914 555-4156 503774
****************************** BOTTOM OF DATA *********************************

Figure 14. Table TAB1 as Displayed Using Panel PAN1

)Attr
_Type(Input) Intens(Low)
# Type(Input) Intens(Low) Caps(off)

)Body
%---------------------------- Employee List ---------------------------------
%Command ===>_CMDFLD %Scroll ===>_amt +
%
+ Notes ==>#NOTES
+Make changes to any information except Employee Serial:
+
+------ Employee Name ------- --- Phone --- Employee
+Last First MI Area Number Serial
+
)Model
_LNAME _FNAME _I _PHA _PHNUM _EMPSER
)Init

&AMT = PAGE
)Proc

VPUT (Notes) Profile
)End

Figure 15. Table Display Panel Definition PAN1

TBDISPL

226 z/OS V1R2.0 ISPF Services Guide



In this case, control would not be returned to the dialog function.
v Enters the END or RETURN command. This may have been done by the

user pressing a function key or by typing the command into the command
field and pressing the Enter key. Panel PAN1, which is shown in Figure 15,
has a command field named CMDFLD. The user may or may not have
typed other data into the fixed or scrollable portion of the screen.

v Enters the UP or DOWN scroll command when data has been typed into
the fixed or scrollable portion of the screen.

Control will not be returned to the dialog function when the user does one of
the following:
v Presses the Enter key when no data has been typed into the fixed or

scrollable portion of the screen and the panel definition contains neither a
)REINIT nor a )PROC section.

v Enters the UP or DOWN scroll command when no data has been typed into
the fixed or scrollable portion of the screen.

v Enters a system command other than UP, DOWN, END, or RETURN. For
example, HELP, SPLIT, or CURSOR.

v Enters an application command that selects another dialog.

When a model set in the scrollable part of the display has been changed, the
corresponding table row is said to be a selected row. TBDISPL retrieves the
selected row. To retrieve a row means to position the CRP to that row, read it,
and then store the row values into the function pool. Next, values from the
changed model set are stored in the function pool. If there are no selected
rows, then the CRP is set to zero.

5. Set &RC = return code
Save the return code from TBDISPL in variable RC. This variable controls the
loop starting in step 4. The following return codes are possible:
0 There were zero or one selected rows
4 There were two or more selected rows
8 The user entered the END command. Any number of rows, including

zero, may have been selected.

It is possible that TBDISPL will issue severe error return codes of 12 or 20.
Because CONTROL ERRORS CANCEL, the default value, is in effect, ISPF
will cancel the dialog function.

6. Process fixed portion input
Process the data the user typed into the fixed portion of the display. On a
table display panel definition, the )BODY section defines the fixed portion of
the display and the )MODEL section defines the scrollable portion of the
display. Panel PAN1, shown in Figure 15, has three input fields in the )BODY
section:
CMDFLD

The command field
AMT The scroll amount field
NOTES

A “notepad” field

Users can enter ISPF system commands such as END, RETURN, UP, DOWN,
HELP, and SPLIT in the CMDFLD field. Or, they can enter an application
command that SELECTs another dialog, if there is such a command defined in
the active command table. Users can also enter function commands. These are

TBDISPL

Chapter 2. Description of ISPF Services 227



commands that are handled by the dialog function. CANCEL is an example of
a function command. The function could check if CMDFLD had the value
CANCEL. If so, a TBEND could be issued. In this example, there would also
have to be logic to leave the TBDISPL loop after the TBEND is issued.

The second input field, AMT, is the scroll amount field. Changes to this field
are always handled by ISPF. The TBDISPL service doesn’t consider changes to
this field as “input to the fixed portion of the screen”.

The third input field, NOTES, could be used as a small on-screen notepad.
The )PROC section of PAN1 uses the VPUT service to put this variable into
the profile pool. In this field, the user could write short notes that are to be
remembered from one session to the next.

This example shows the processing of the fixed portion input as step 6. It is
done before the processing of the scrollable portion input. This would be
natural for handling a CANCEL command. However, if for example, the
dialog function also handled a SAVE command, which would result in a
TBSAVE, the dialog writer may want that processing to occur after the
scrollable portion input processing.

The processing of the fixed portion input can be placed:
a. Before the processing of all selected rows (step 6)
b. After the processing of all selected rows (between steps 13 and 14)
c. Before the processing of each selected row (between steps 7 and 8)
d. After the processing of each selected row (between steps 8 and 9)

7. Set &PROCFLAG = ON
Create a variable that indicates there are selected rows. In this example, the
variable is called “PROCFLAG”. Initialize this flag to ON so it will enter the
loop in step 8.

8. Process scrollable portion input TBPUT TAB1
Process the scrollable portion input. Here, the current selected row is
processed. In this example, the TBPUT service is invoked to update the row.
The function pool values of variables corresponding to table columns are
written to the table row.
If the processing of the scrollable portion input includes invoking any service
that resulted in a display, such as BROWSE, EDIT, DISPLAY, or another
TBDISPL, then the CONTROL service must be invoked to save and then
restore the table display control information, such as pending selected rows.
Example:
TBDISPL TAB1 PANEL(PAN1)

Display table TAB1 with panel PAN1, assuming you select several
rows

CONTROL DISPLAY SAVE
Save “control” information

DISPLAY PANEL(PAN2)
Display panel PAN2

CONTROL DISPLAY RESTORE
Restore the “control” information

TBDISPL TAB1
Invoke TBDISPL to get the next selected row

CONTROL DISPLAY SAVE
Save “control” information

DISPLAY PANEL(PAN2)
Display panel PAN2

TBDISPL

228 z/OS V1R2.0 ISPF Services Guide



CONTROL DISPLAY RESTORE
Restore the “control” information

If non-ISPF displays are processed, instead of using CONTROL DISPLAY
SAVE and CONTROL DISPLAY RESTORE, use CONTROL DISPLAY
REFRESH either before or after the non-ISPF display is done.

9. If &ZTDSELS > 1 Then
Determine if there are any pending selected rows. If ZTDSELS is zero, there
were no selected rows and this step would not have been reached (see Step 7).
If ZTDSELS is one, then there was one selected row. This is the current row
and there are no pending selected rows. If ZTDSELS is more than one, then
there is the current selected row and at least one pending selected row.

10. TBDISPL TAB1
Reinvoke TBDISPL without the PANEL or MSG parameter to get the next
selected row. That is, the CRP will be positioned to the next selected row to
retrieve that row, and the function pool values of variables corresponding to
fields in the scrollable portion will be updated to reflect changes made to the
corresponding model set on the display.

11. Else
Since ZTDSELS is not greater than one (Step 9) but is greater than zero (Step
7), then ZTDSELS must equal one. This means that there are no pending
selected rows.

12. Set &PROCFLAG = OFF
Force control to leave the loop started in Step 7. All selected rows have been
processed.

13. End
End the selected row processing loop.

14. End
End the main loop, which displays table TAB1 with panel PAN1.

15. TBCLOSE TAB1
Close table TAB1. Write the updated version of TAB1 onto disk, and delete the
virtual storage copy.

TBDISPL Summary
1. Floating command line

If the command line for a table display panel has been moved to the bottom
position, and if no alternate placement has been specified for the long
message line, the line directly above the repositioned command line is
reserved (left blank) for the display of long messages. Otherwise, if a user
entered erroneous data on that line, a long message could overlay that data.
ISPF adjusts display scrolling to account for the line reserved for long
messages.

2. TBDISPL does not modify the table
TBDISPL itself does not modify the table. The dialog function can use the
information entered by the user to determine what processing is to be
performed and can modify the table accordingly.

3. Displaying an empty table
It is acceptable to invoke TBDISPL to display a table with no rows. The
scrollable portion will consist only of the bottom-of-data marker. In previous
versions, this resulted in a severe error, return code = 20, message = ISPT051.

TBDISPL

Chapter 2. Description of ISPF Services 229



4. CSRROW and auto-selection
Specifying the CSRROW parameter or control variable without setting the
AUTOSEL parameter or control variable to “NO” results in the row being
selected, even if the user did not explicitly select the row. This is called
auto-selection.

5. Dual defaults for CAPS and JUST
In the )BODY section of a table display panel, input and output fields default
to CAPS(ON) and JUST(LEFT). In the )MODEL section, they default to
CAPS(OFF) and JUST(ASIS). These dual defaults exist to allow both new
capability in this version and compatibility with previous versions of the
product.

6. Effect of having a )REINIT or )PROC section
TBDISPL behavior is affected by whether a )REINIT or )PROC section is
included in the panel definition. When a )REINIT or )PROC section is
included, and the user makes no modification to the screen and presses the
Enter key, TBDISPL returns control to the dialog function. On the other hand,
if neither a )REINIT nor a )PROC section is included, and the user makes no
modification to the screen and presses the Enter key, TBDISPL treats this as a
“no operation”, and control does not return to the dialog function. This is to
allow both new capability in this version and compatibility with previous
versions of the product.

7. Search arguments in conjunction with TBDISPL
Only search arguments specifying a forward scan through the table should be
used in conjunction with TBDISPL. Otherwise, TBDISPL does not support
scrolling through the display.

8. TBDISPL parameters and their categories:

Required Optional
Service Parameter Parameters Categories

TBDISPL table-name in name
[PANEL(panel-name)] in name
[MSG(message-id)] in name
[CURSOR(field-name)] in name
[CSRROW(table-row-number)] in number
[CSRPOS(cursor-position)] in number
[AUTOSEL(YES|NO)] in key
[POSITION(crp-name)] out number
[ROWID(rowid-name)] out number

in Indicates that the parameter is used to pass information from the
dialog to ISPF.

out Indicates that the parameter is used to enable ISPF to pass information
to the dialog. ISPF will create a variable with the indicated name.

key Indicates it is a keyword parameter.
name Indicates the value specified in the parameter is a name.
number

Indicates the value specified in the parameter is a number.
9. The following items can appear in the )BODY section of a table display panel

definition:
v Text
v Variables within text, such as “&XYZ”
v Input fields
v Output fields
v Dynamic areas that are not scrollable or extendable
v A graphic area that is not extendable.

TBDISPL

230 z/OS V1R2.0 ISPF Services Guide



10. The following items cannot appear in the )BODY section of a table display
panel definition:
v Dynamic areas that are scrollable or extendable
v More than one graphic area. This is true for any panel
v A graphic area that is extendable. Graphic areas are never scrollable.

11. The following items can appear in the )MODEL section of a table display
panel definition:
v Text
v Variable model lines
v Input fields
v Output fields.

12. The following items cannot appear in the )MODEL section of a table display
panel definition:
v Variables within text
v Dynamic areas
v Graphic areas.

13. During TBDISPL display, the following user actions return control to the
dialog function:
v Pressing the Enter key. See item 6 in “TBDISPL Summary” on page 229 for

an exception.
v Entering the END or RETURN command
v Entering the UP or DOWN scroll command when data has been typed into

the fixed or scrollable portion of the screen
v Entering the UP or DOWN scroll command when using dynamic table

expansion and more rows are needed to satisfy the scroll request.
14. During TBDISPL display, the following user actions do not return control to

the dialog function:
v Pressing the Enter key when no data has been typed into the fixed or

scrollable portion of the screen and the panel definition has neither a
)REINIT nor a )PROC section

v Entering the UP or DOWN scroll command without typing data into the
fixed or scrollable portion of the screen. Also, control does not return to the
dialog function in either of the following two cases:
– Dynamic table expansion is not defined
– Dynamic table expansion is defined and the table already contains

enough rows to satisfy the scroll.
v Entering a system command other than UP, DOWN, END, or RETURN. For

example, HELP, SPLIT, PRINT, or CURSOR.
v Entering an application command that selects another dialog.

15. The following return codes are possible from TBDISPL:
0 There were zero or one selected rows. A scroll may be pending.
4 There were two or more selected rows.
8 The END or RETURN command was entered. Any number of rows,

including zero, may have been selected.
12 The specified panel or message could not be found or the specified

table was not open.
20 Severe error.

16. Levels of commands:

System commands
Provided by ISPF and always available to a user, unless explicitly
overridden by an application. For example: END, UP, HELP, PRINT.

TBDISPL

Chapter 2. Description of ISPF Services 231



Application commands
Available to a user throughout operation of an application. For
example: a command defined in the active command table that
SELECTs another dialog.

Function commands
Meaningful only while operating a particular function within an
application. For example, the dialog function can be designed so that
TBSORT is invoked when the user enters “SORT” in the command
field.

17. Commands can be entered by:
v Typing information into the command field and pressing the Enter key
v Pressing a function key
v Selecting an ATTENTION FIELD using the light pen or cursor select key.

18. TBDISPL does not rebuild the display until all selected rows have been
successfully processed. Therefore, the CRPs of the displayed table will not
match those of the actual table if the order or structure of the table is changed
within a TBDISPL series. This can affect correct cursor row placement for a
redisplay with message while in the series.
It is recommended that any verification of selected rows be done for all
selected rows before performing operations that change the order or structure
of the table. This requires that selected row IDs be saved until all selected
rows have been retrieved and validated. This affects only the cursor placement
as just described. The value passes back in the name specified with the
POSITION keyword contains the CRP of the row in the actual table.

TBEND – Close a Table without Saving
The TBEND service deletes the virtual storage copy of the specified table, making
it unavailable for further processing. The permanent copy, if any, is not changed.

A TBEND request for a shared table causes the use count in the table for that
logical screen to be decremented by one. If the use count for all logical screens is
zero, the TBEND service is performed. Otherwise, no action occurs, and the table is
available for continued processing in any screen that still has a use count greater
than zero.

Command Invocation Format
ISPEXEC TBEND table-name

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBEND ', table-name);

Parameters
table-name

Specifies the name of the table to be ended.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

TBDISPL

232 z/OS V1R2.0 ISPF Services Guide



buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

12 Table is not open.

20 Severe error.

Example
Delete the virtual storage copy table TELBOOK; do not change any permanent
copy in the table library.
ISPEXEC TBEND TELBOOK

Set the program variable BUFFER to contain:
TBEND TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBEND ','TELBOOK ');

TBERASE – Erase a Table
The TBERASE service deletes a table from the table output library. The table
output library must be allocated before invoking this service.

The table must not be open in WRITE mode when this service is invoked.

Command Invocation Format
ISPEXEC TBERASE table-name [LIBRARY(library)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBERASE ', table-name [,library]);

Parameters
table-name

Specifies the name of the table to be erased.

TBEND

Chapter 2. Description of ISPF Services 233



library
Specifies the name of a DD statement or LIBDEF lib-type that defines the
library in which the table exists. If this parameter is omitted, the default is
ISPTABL.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Table does not exist in the output library.

12 Table in use; ENQ failed.

16 Table output library not allocated.

20 Severe error.

Example
Erase the table TELBOOK from the table library.
ISPEXEC TBERASE TELBOOK

Set the program variable BUFFER to contain:
TBERASE TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBERASE ','TELBOOK ');

TBEXIST – Determine Whether a Row Exists in a Table
The TBEXIST service tests for the existence of a specific row in a table with keys.

The current contents of the key variables, dialog variables that correspond to keys
in the table, are used to search the table for the row.

This service is not valid for non-keyed tables and causes the current row pointer
(CRP) to be set to the top.

Command Invocation Format
ISPEXEC TBEXIST table-name

TBERASE

234 z/OS V1R2.0 ISPF Services Guide



Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBEXIST ', table-name);

Parameters
table-name

Specifies the name of the table to be searched.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion; the CRP is positioned to the specified row.

8 Keyed tables: the specified row does not exist; the CRP is set to TOP (zero).

Non-keyed tables: service not possible; the CRP is set to TOP.

12 Table is not open.

20 Severe error.

Example
In the keyed table TELBOOK, test for the existence of a row having a specific key
value.
ISPEXEC TBEXIST TELBOOK

If return code = 0, the row exists.

Set the program variable BUFFER to contain:
TBEXIST TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

If return code = 0, the row exists.

or alternately
CALL ISPLINK ('TBEXIST ','TELBOOK ');

If return code = 0, the row exists.

TBEXIST

Chapter 2. Description of ISPF Services 235



TBGET – Retrieve a Row from a Table
The TBGET service accesses a row in a table. If the NOREAD parameter is not
specified, the row values are read into the function pool.

For tables with keys, the table is searched for the row to be fetched. The current
contents of the key variables, dialog variables that correspond to keys in the table,
are used as the search argument.

For tables without keys, the row pointed to by the current row pointer (CRP) is
fetched. You can use the TBSCAN, TBSKIP, TBBOTTOM, and TBTOP services to
position the CRP.

The CRP is always set to point to the row that was fetched.

All variables in the row, including key and name variables, if any, are stored into
the corresponding dialog variables. A list of extension variable names can also be
retrieved.

Command Invocation Format
ISPEXEC TBGET table-name [SAVENAME(var-name)]

[ROWID(rowid-name)]

[NOREAD]

[POSITION(crp-name)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBGET ', table-name [,var-name]

[,rowid-name]

[,'NOREAD ']

[,crp-name]);

Parameters
table-name

Specifies the name of the table to be read.

var-name
Specifies the name of a variable into which a list of extension variable names
contained in the row will be stored. The list is enclosed in parentheses, and the
names within the list are separated by a blank.

rowid-name
Specifies the name of a variable in which a number that uniquely identifies the
row being accessed is to be stored. Later, this identifier can be specified in the
ROW parameter of TBSKIP to cause the CRP to be positioned to the row. This
identifier is not saved on permanent storage by TBSAVE or TBCLOSE.

TBGET

236 z/OS V1R2.0 ISPF Services Guide



NOREAD
Specifies that the variables contained in the requested row are not to be read
into the variable pool.

crp-name
Specifies the name of a variable in which the row number pointed to by the
CRP is to be stored. If the CRP is positioned to TOP, the row number returned
is zero.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Keyed tables: The row specified by the value in the key variables does not
exist in any row after the current row pointer, the CRP is set to TOP
(ZERO).

Non-keyed tables: the CRP was at TOP and remains at TOP.

12 Table is not open.

16 Variable value has been truncated, or insufficient space was provided to
return all extension variable names.

20 Severe error.

Example
In the keyed table TELBOOK, from a row having a specific key value, copy
variable values into the respective function pool variables having the same names.
ISPEXEC TBGET TELBOOK

Set the program variable BUFFER to contain:
TBGET TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBGET ','TELBOOK ');

TBMOD – Modify a Row in a Table
The TBMOD service unconditionally updates a row in a table.

For tables with keys, the table is searched for the row to be updated. The current
contents of the key variables, dialog variables that correspond to keys in the table,
are used as the search argument. If a match is found, the row is updated. If a
match is not found, a TBADD is performed, adding the row to the end of the table

TBGET

Chapter 2. Description of ISPF Services 237



(or it is added at an appropriate point for maintaining the table) in the sequence
specified in a previously processed TBSORT request.

For tables without keys, TBMOD is equivalent to TBADD. The following
processing takes place: any new row is added either immediately following the
current row, pointed to by the current row pointer (CRP), or it is added at a point
appropriate for maintaining the table in the sequence specified in a previously
processed TBSORT request.

The CRP is always set to point to the row that was updated or added.

The current contents of all dialog variables that correspond to columns in the table,
keys and names, are saved in the row.

Additional variables, not specified when the table was created, can also be saved
in the row. These “extension” variables apply only to this row, not to the entire
table. Whenever the row is updated, the extension variables must be respecified if
they are to be rewritten.

When the TBMOD service uses the TBADD service to add rows to a table, the
default value for number-of-rows parameter of the MULT keyword for TBADD can
affect TBMOD execution. See the description of the TBADD service for
information.

Command Invocation Format
ISPEXEC TBMOD table-name [SAVE(name-list)]

[ORDER]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBMOD ', table-name [,name-list]

['ORDER ']);

Parameters
table-name

Specifies the name of the table to be updated.

name-list
Specifies a list of extension variables, by name, that are to be saved in the row,
in addition to the variables specified when the table was created.

ORDER
Specifies that any new row is to be added or inserted in the order specified in
the sort information record. A TBSORT must have been performed for this
table prior to use of this keyword. For tables with keys, the row is updated
and then reordered if necessary. If a match is not found or the table does not
have keys, the row is added at a point appropriate for maintaining the table in

TBMOD

238 z/OS V1R2.0 ISPF Services Guide



the sequence specified by the sort information record. This keyword is ignored
if the table has never been sorted. If this keyword is omitted, any existing sort
information record is nullified.

When a newly inserted row has sort field-names equal to the sort field-names
of an existing row, the insertion is made after the existing row.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion. Keyed tables: Existing row updated. Non-keyed tables:
New row added to table.

8 Keys did not match; new row added to the table. Returned only for tables
with keys.

12 Table is not open.

16 Numeric conversion error; see numeric restrictions for TBSORT. Returned
only for sorted tables.

20 Severe error.

Example
Update or add a row of variables in the table TELBOOK using values from
variables in the function variable pool.
ISPEXEC TBMOD TELBOOK

Set the program variable BUFFER to contain:
TBMOD TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBMOD ','TELBOOK ');

TBOPEN – Open a Table
The TBOPEN service reads a permanent table from the table input file into virtual
storage, and opens it for processing. TBOPEN should not be issued for temporary
tables.

An ENQ is issued to ensure that no other user is currently accessing the table. The
ENQ applies only to the specified table in the table (member) in the table input
library, not the entire library. For the WRITE option, an exclusive ENQ remains in
effect until the table is closed. For the NOWRITE option, a shared ENQ remains in
effect only during the time that the table is read into storage.

TBMOD

Chapter 2. Description of ISPF Services 239



Command Invocation Format
ISPEXEC TBOPEN table-name [WRITE|NOWRITE]

[LIBRARY(library)]

[SHARE]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBOPEN ', table-name [,'WRITE '|'NOWRITE ']

[,library]

[,'SHARE ']);

Parameters
table-name

Specifies the name of the table to be opened.

WRITE
Specifies that the table is being accessed for update. The updated table can
subsequently be saved on disk by use of the TBSAVE or TBCLOSE service.
This option is the default.

The WRITE/NOWRITE usage of a shared table must be consistent on all
TBOPEN and TBCREATE requests. That is, all requests for a given shared table
that result in concurrent use of that table must specify the same WRITE or
NOWRITE attribute.

NOWRITE
Specifies read-only access. Upon completion of processing, the virtual storage
copy should be deleted by invoking the TBEND or TBCLOSE service.

library
Specifies the name of a DD statement or LIBDEF lib-type that defines the input
library. If specified, a generic (non-ISPF) DD name must be used. If this
parameter is omitted, the default is ISPTLIB.

SHARE
Specifies that the table in virtual storage can be shared between logical screens
while the user is in split-screen mode. The TBOPEN request from the first
logical screen reads the table into virtual storage and opens it. Subsequent
TBOPEN requests from other logical screens use the same table (and same
CRP) that is in virtual storage.

A successful TBOPEN or TBCREATE request causes the use count in the table
to be incremented by one. The use count determines the action taken by
subsequent TBEND and TBCLOSE requests.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

TBOPEN

240 z/OS V1R2.0 ISPF Services Guide



buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Table does not exist.

12 ENQ failed; table was in use by another user or the current user.

16 Table input library was not allocated.

20 Severe error.

Example
Access (open) the table TELBOOK for updating.
ISPEXEC TBOPEN TELBOOK WRITE

Set the program variable BUFFER to contain:
TBOPEN TELBOOK WRITE

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately

CALL ISPLINK (’TBOPEN ’,’TELBOOK ’,’WRITE ’);

TBPUT – Update a Row in a Table
The TBPUT service updates the current row of a table.

For tables with keys, the current contents of the key variables, dialog variables that
correspond to keys in the table, must match the key of the current row, pointed to
by the current row pointer (CRP). Otherwise, the update is not performed.

For tables without keys, the row pointed to by the CRP is always updated.

If the update was successful, the CRP remains unchanged. It continues to point to
the row that was updated. The current contents of all dialog variables that
correspond to columns in the table are saved in the row.

Additional variables not specified when the table was created, can also be saved in
the row. These “extension” variables apply only to the row, not to the entire table.
Whenever the row is updated, the extension variables must be respecified if they
are to be rewritten.

Command Invocation Format
ISPEXEC TBPUT table-name [SAVE(name-list)]

[ORDER]

TBOPEN

Chapter 2. Description of ISPF Services 241



Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBPUT ', table-name [,name-list]

[,'ORDER ']);

Parameters
table-name

Specifies the name of the table to be updated.

name-list
Specifies a list of extension variables, by name, that are to be saved in the row,
in addition to the variables specified when the table was created.

ORDER
Specifies that, if necessary, the updated row is to be moved in the table to a
point that preserves the order specified in the sort information record. A
TBSORT must have been performed for this table prior to use of this keyword.
This keyword is ignored if the table has never been sorted. If this keyword is
omitted, any existing sort information record is nullified.

When a newly repositioned row has sort field-names equal to the sort
field-names of an existing row, the row is inserted after the existing row.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Keyed tables: The key does not match that of the current row; CRP set to
TOP (zero).

Non-keyed tables: CRP was at TOP and remains at TOP.

12 Table is not open.

16 For sorted tables: numeric conversion error; see numeric restrictions for
TBSORT.

20 Severe error.

Example
Update a row, in the table TELBOOK, using values from variables in the function
variable pool.
ISPEXEC TBPUT TELBOOK

Set the program variable BUFFER to contain:

TBPUT

242 z/OS V1R2.0 ISPF Services Guide



TBPUT TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBPUT ','TELBOOK ');

TBQUERY – Obtain Table Information
The TBQUERY service returns information about a specified table, which must
have been opened (TBOPEN) by the current user prior to invoking this service.
The number of key fields and their names, as well as the number of all other
columns and their names, can be obtained. The number of rows and the current
row position can also be obtained.

All the parameters except for table-name are optional. If all of the optional
parameters are omitted, TBQUERY simply validates the existence of an open table.

Command Invocation Format
ISPEXEC TBQUERY table-name [KEYS(key-name)]

[NAMES(var-name)]

[ROWNUM(rownum-name)]

[KEYNUM(keynum-name)]

[NAMENUM(namenum-name)]

[POSITION(crp-name)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBQUERY ', table-name [,key-name]

[,var-name]

[,rownum-name]

[,keynum-name]

[,namenum-name]

[,crp-name] );

Parameters
table-name

Specifies the name of the table for which information is desired.

TBPUT

Chapter 2. Description of ISPF Services 243



key-name
Specifies the name of a variable into which a list of key variable names
contained in the table will be stored. A list that is not null will be enclosed in
parentheses, and the names within the list will be separated by a blank. If no
key variables are defined for the table, the key-name variable is set to null.

var-name
Specifies the name of a variable into which a list of variable names in the table,
specified with the NAMES keyword when the table was created, will be
stored. The list will be enclosed in parentheses, and the names within a list
that is not null will be separated by a blank. If no name variables are defined
for the table, the var-name variable is set to null.

rownum-name
Specifies the name of a variable in which the number of rows contained in the
table will be stored.

keynum-name
Specifies the name of a variable in which the number of key variables
contained in the table will be stored.

namenum-name
Specifies the name of a variable in which the number of variables in the table
specified with the NAMES keyword when the table was created will be stored.

crp-name
Specifies the name of a variable in which the row number pointed to by the
CRP is to be stored. If the CRP is positioned to TOP, the row number returned
is zero.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

12 Table is not open.

16 Not all keys or names were returned because insufficient space was
provided.

20 Severe error.

Example
For the keyed table TELBOOK:
v In dialog variable QKEYS, store the names of key variables.
v In dialog variable QNAMES, store the names of non-key variables.
v In dialog variable QROWS, store the number of rows.
ISPEXEC TBQUERY TELBOOK KEYS(QKEYS) NAMES(QNAMES) ROWNUM(QROWS)

Set the program variable BUFFER to contain:
TBQUERY TELBOOK KEYS(QKEYS) NAMES(QNAMES) ROWNUM(QROWS)

TBQUERY

244 z/OS V1R2.0 ISPF Services Guide



Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBQUERY ','TELBOOK ',

'QKEYS ','QNAMES ','QROWS ');

TBSARG – Define a Search Argument
The TBSARG service establishes a search argument for scanning a table by using
the TBSCAN or TBDISPL services. When TBSARG is used in conjunction with
TBDISPL, the panel definition referred to by the TBDISPL request must contain a
specification of ROWS(SCAN) on the )MODEL statement in the panel definition.

The direction of the scan, forward or backward, can be specified. The condition(s)
that terminate the subsequent scan can also be specified.

The search argument is specified in dialog variables that correspond to columns in
the table, including key variables. A value of null for one of the dialog variables
means that the corresponding table variable is not to be examined during the
search. However, the variable will be examined if the NOBSCAN parameter was
specified when the variable was defined using the VDEFINE service.

Generally, TBSARG is used prior to TBSCAN or TBDISPL operations to establish
search arguments for these operations. To set up a search argument, set table
variables in the function pool to nulls by using TBVCLEAR. Next, set a value in
each variable in the function pool that is to be part of the search argument. Then,
issue TBSARG to establish this variable(s) as the search argument to be used in
subsequently requested TBSCAN or TBDISPL operations.

Use the NAMECOND list to establish search argument conditions. For any table
variable that was given a value in the function pool, but is not specified in the
NAMECOND list, the default is EQ.

Only extension variables can be included in the search argument. They are
included by specifying their names in the name-list parameter. The values of these
variables become part of the search argument. A null value in an extension variable
is a valid search argument.

A search argument of the form AAA* means that only the characters up to the
asterisk (*) are compared. This is called a generic search argument. A generic
search argument is specified by placing an asterisk in the last non-blank position of
the argument. Asterisks embedded in the argument are treated as data. For
example, to perform a generic search for a row value of DATA*12, the generic
search argument is:
DATA*12*

The first asterisk is part of the search argument. The second asterisk designates the
argument to be a generic search argument.

In a CLIST, the following technique can be used to set a variable to a literal value
that ends with an asterisk:
SET &X = AAA&STR(*)

TBQUERY

Chapter 2. Description of ISPF Services 245



You can use either a DBCS or a MIX (DBCS and EBCDIC) format string as a search
argument. If either is used as a generic search argument, it must be specified as
follows:
v DBCS format string

DBDBDBDB**

where DBDBDBDB represents a 4-character DBCS string and ** is a single DBCS
character representing the asterisk (*).

v MIX (DBCS and EBCDIC) format string
eeee[DBDBDBDBDB]*

where eeee represents a 4-character EBCDIC string, DBDBDBDBDB represents a
5-character DBCS string, [ and ] represent shift-out and shift-in characters, and *
is an asterisk in single-byte format.

The position of the current row pointer (CRP) is not affected by the TBSARG
service.

TBSARG replaces all previously set search arguments for the specified table.

Comparisons between the row values and the argument list are always done on a
character basis. That is, the values are considered character data, even if they
represent numbers.

Command Invocation Format
ISPEXEC TBSARG table-name [ARGLIST(name-list)]

[NEXT|PREVIOUS]

[NAMECOND(name-cond-pairs)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBSARG ', table-name

[,name-list]

[,'NEXT '|'PREVIOUS']

[,name-cond-pairs]);

Parameters
table-name

Specifies the name of the table for which an argument is to be established.

name-list
Specifies a list of extension variables, by name, whose values are to be used as
part of the search argument. See “Invoking the ISPF Services” on page 2 for
specification of name lists.

TBSARG

246 z/OS V1R2.0 ISPF Services Guide



NEXT
Specifies that the scan is to proceed from the row following the current row to
the bottom of the table. This is the default.

PREVIOUS
Specifies that the scan is to proceed from the row preceding the current row to
the top of the table. To scan the bottom row, CRP must be positioned to TOP.

name-cond-pairs
Specifies a list of names and conditions for determining the search argument
conditions for scanning a table. There must be one condition specified for
every name specified in the list. This list is used to associate a particular
operator (condition) with a previously established scan argument. This
parameter does not affect how the search arguments are established.

The name-cond-pairs syntax is as follows:
(name1,condition1,name2,condition2 ...)

Each “name” must be the name of a key field, name field, or name of an
extension variable for the table. If the specified name does not exist, a severe
error is encountered.

The “condition” specifies the scan condition for the “name” (column) to which
it is paired. The search arguments are specified in dialog variables that
correspond to columns in the table, and this determines the columns that take
place in the search.

The valid condition-values are EQ, NE, LE, LT, GE, and GT. If some or all
condition-value-pairs are not specified, the default is EQ for those columns
participating in the search. Each argument and its associated operator are
treated as separate entities, and not as subfields of a single argument. The
condition-values LE, LT, GE, and GT might have a date indicator immediately
following. The date indicator is Yn, where Y indicates that the variable name
associated with the condition-value is a date, and n is an integer from 1 to 7
indicating the offset within the variable value where the year begins. The year
should be a 2–digit year, because a century value is inserted in front of the
2–digit year for compare purposes. The following meanings are associated with
the condition-values:

EQ Specifies that the search is for an equal condition between the
argument value and the row value. This is the default.

NE Specifies that the search is for a row value not equal to the argument
value.

LE Specifies that the search is for a row value less than or equal to the
argument value.

LT Specifies that the search is for a row value less than the argument
value.

GE Specifies that the search is for a row value greater than or equal to the
argument value.

GT Specifies that the search is for a row value greater than the argument
value.

Yn Can be used with LE, LT, GE, and GT. It must immediately follow one
of the four allowed condition-values. The Y indicates that the paired
variable name is a date variable that needs a century value added to a

TBSARG

Chapter 2. Description of ISPF Services 247



2–digit year so that dates can be compared correctly. The n is a number
from 1 to 7 that gives the offset within the variable value where the
year is located.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 All column variables are null, and the name-list parameter was not
specified; no argument is established.

12 Table is not open.

20 Severe error.

Examples
Establish a search argument to be used by a TBSCAN operation of the table
TELBOOK. Assume that LNAME and ZIPCODE are columns in table TELBOOK.
Specify a scan direction of forward and terminate the scan when the row value for
the LNAME column is equal to “JOHNSON” and the ZIPCODE column is greater
than 08007.
v Invoke TBVCLEAR for table TELBOOK
v Set variable LNAME to JOHNSON
v Set variable ZIPCODE to 08007
v Issue the following request:
ISPEXEC TBSARG TELBOOK NEXT NAMECOND(LNAME,EQ,ZIPCODE,GT)

Set the program variable BUFFER to contain:
TBSARG TELBOOK NEXT NAMECOND(LNAME,EQ,ZIPCODE,GT)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBSARG ','TELBOOK ',' ','NEXT ',

'(LNAME,EQ,ZIPCODE,GT)');

Establish a search argument to be used by a TBSCAN operation of the table
DATETBL. Assume DATE1 to be a name variable in table DATETBL and that the
dates are in a yy/mm/dd format. Specify a scan direction of forward and
terminate the scan when the row value of DATE1 is greater than 99/01/31.
v Invoke TBVCLEAR for table DATETBL
v Set variable DATE1 to 99/01/31
v Issue the following TBSARG request:
ISPEXEC TBSARG DATETBL NEXT NAMECOND(DATE1,GTY1)

TBSARG

248 z/OS V1R2.0 ISPF Services Guide



TBSAVE – Save a Table
The TBSAVE service writes the specified table from virtual storage to the table
output library. The table output library must be allocated to a ddname of ISPTABL,
or specified by using the LIBDEF service before invoking this service. The table
must be open in WRITE mode.

When storing a table in an output file, the user can give it a new name. .bookmark
The table name used in the output library must not be an alias name.

TBSAVE does not delete the virtual storage copy of the table; the table is still open
and available for further processing.

Table output can be directed to a table output library other than the library
specified on the table output ISPTABL DD statement or LIBDEF service request.
The library to be used must be allocated before table services receives control.
Thus, an application can update a specific table library. This is particularly useful
for applications that need to maintain a common set of tables containing their data.

Command Invocation Format
ISPEXEC TBSAVE table-name [NEWCOPY|REPLCOPY]

[NAME(alt-name)]

[PAD(percentage)]

[LIBRARY(library)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBSAVE ', table-name, [,'NEWCOPY '|'REPLCOPY']

[,alt-name]

[,percentage]

[,library]);

Parameters
table-name

Specifies the name of the table to be saved.

NEWCOPY
Specifies that the table is to be written at the end of the output library,
regardless of whether an update in place would have been successful. This
insures that the original copy of the table is not destroyed before a replacement
copy has been written successfully.

REPLCOPY
Specifies that the table is to be rewritten in place in the output library. If the
existing member is too small to complete the update in place successfully, or if
a member of the same name does not exist in the library, the complete table
will be written at the end of the output library.

TBSARG

Chapter 2. Description of ISPF Services 249



A comparison is made between the virtual storage size of the table and the
external size in the table output library. If there is insufficient storage to write
the table in-place, it is written at the end of the table output library.

alt-name
Specifies an alternate name for the table. The table will be stored in the output
library with the alternate name. If another table already exists in the output
library with that name, it will be replaced. If the table being saved exists in the
output library with the original name, that copy will remain unchanged.

percentage
Specifies the percentage of padding space, based on the total size of the table.
The padding is added to the total size of the table only when the table is
written as a new copy. This parameter does not increase the table size when an
update in place is performed.

Padding permits future updating in place, even when the table has expanded
in size. Should the table expand beyond the padding space, the table is written
at the end of the table output library instead of being updated in place.

This parameter must have an unsigned integer value. For a call, it must be a
fullword fixed binary integer.

The default value for this parameter is zero.

library
Specifies the name of a DD statement or LIBDEF lib-type that defines the
output library in which table-name is to be saved. If specified, a generic
(non-ISPF) DD name must be used. If this parameter is omitted, the default is
ISPTABL.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

12 Table is not open.

16 Alternate table output library was not allocated.

20 Severe error.

Example
Write a table, TELBOOK, previously opened and currently in virtual storage, to the
table library. Retain the copy in virtual storage for further processing. Do not close
the table.
ISPEXEC TBSAVE TELBOOK

Set the program variable BUFFER to contain:
TBSAVE TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:

TBSARG

250 z/OS V1R2.0 ISPF Services Guide



CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBSAVE ','TELBOOK ');

TBSCAN – Search a Table
The TBSCAN service searches a table for a row with values that match an
argument list. The argument list can be established by use of the TBSARG service,
or specified in the name-list for TBSCAN.

The search can be either in a forward or a backward direction. The forward
direction starts with the row after the current row and continues to the end of the
table. The backward direction starts with the row before the CRP and continues to
the top of the table. If a match is found, the CRP is set to that row. The row is
retrieved unless the NOREAD parameter is specified. All variables in the row,
including keys and extension variable, if any, are stored in the corresponding
variables in the function pool. A list of extension variable names can also be
retrieved.

Use of the name-list parameter is optional. If specified, it overrides the search
argument set by the TBSARG service for this search only. The values of all
variables specified in the name-list parameter become part of the search argument.
Key, name, and extension variables can be specified.

A value of the form AAA* means that only the characters This is called a generic
search argument. A generic search argument is specified by placing an asterisk in
the last non-blank position of the argument. Asterisks embedded in the argument
are treated as data. For example, to perform a generic search for a row value of
DATA*12, the generic search argument is:
DATA*12*

The first asterisk is part of the search argument. The second asterisk designates the
argument as a generic search argument. In a CLIST, the following technique can be
used to set a variable to a literal value that ends with an asterisk:
SET &X = AAA&STR(*)

A null value in a variable is a valid search argument.

You can use either a DBCS or a MIX (DBCS and EBCDIC combined) format string
as a search argument. If either is used as a generic search argument, it must be
specified as follows:
v DBCS format string

DBDBDBDB**

where DBDBDBDB represents a DBCS string and ** is a single DBCS character
representing the asterisk (*).

v MIX (DBCS and EBCDIC combined) format string

where eeee represents an EBCDIC string, DBDBDBDB represents a DBCS string,
[ and ] represent shift-out and shift-in characters, and * is an asterisk in
single-byte format.

TBSARG

Chapter 2. Description of ISPF Services 251



Comparisons between the row values and the argument list are always done on a
character basis. That is, the values are considered character data, even if they
represent numbers.

Command Invocation Format
ISPEXEC TBSCAN table-name [ARGLIST(name-list)]

[SAVENAME(var-name)]

[ROWID(rowid-name)]

[NEXT|PREVIOUS]

[NOREAD]

[POSITION(crp-name)]

[CONDLIST(condition-value-list)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBSCAN ', table-name [,name-list]

[,var-name]

[,rowid-name]

[,'NEXT '|'PREVIOUS']

[,'NOREAD ']

[,crp-name]

[,condition-value-list]);

Parameters
table-name

Specifies the name of the table to be searched.

name-list
Specifies a list of key, name, or extension variables, by name, whose values are
to be used as the search argument. Use of the name-list parameter is optional.
If specified, it overrides the search argument set by the TBSARG service for
this search only. If the name-list parameter is omitted, a search argument must
have been established by a previous TBSARG command. Otherwise, a severe
error occurs. See “Invoking the ISPF Services” on page 2 for specification of
name lists.

var-name
Specifies the name of a variable into which a list of extension variable names
contained in the row will be stored. The list will be enclosed in parentheses,
and the names within the list will be separated by a blank.

rowid-name
Specifies the name of a variable in which a number that uniquely identifies the

TBSCAN

252 z/OS V1R2.0 ISPF Services Guide



row being accessed is to be stored. Later, this identifier can be specified in the
ROW parameter of TBSKIP to cause the CRP to be positioned to the row. This
identifier is not saved on permanent storage by TBSAVE or TBCLOSE.

NEXT
Specifies that the scan is to proceed from the row following the current row to
the bottom of the table. This is the default.

PREVIOUS
Specifies that the scan is to proceed from the row preceding the current row to
the top of the table. To scan the bottom row, CRP must be positioned to TOP.

NOREAD
Specifies that the variables contained in the requested row not be read into the
variable pool.

crp-name
Specifies the name of a variable in which the row number pointed to by the
CRP is to be stored. If the CRP is positioned to TOP, the row number returned
to zero.

condition-value-list
Specifies a list of values for determining when the scan should end. Each
condition-value relates to a search argument for a column or extension variable
in the table as specified in the ARGLIST parameter. This parameter is ignored
if no ARGLIST parameter is specified. The operators specified in the
condition-list correspond one-to-one with the names in the ARGLIST. If there
are extra operators, a severe error condition is encountered.

The name-list and condition-value-list syntax is:
ARGLIST(name1,name2, ....)

CONDLIST(condition1, condition2, ...) The valid condition-values are EQ, NE,
LE, LT, GE, and GT. If there are fewer condition-values than search arguments
the default is EQ for those columns. Each argument and its associated operator
are treated as separate entities, and not as subfields of a single argument.

The condition-values LE, LT, GE, and GT can have a date indicator
immediately following them. The date indicator is Yn, where Y indicates that
the variable name associated with the condition-value is a date, and n is an
integer between 1 and 7 indicating the offset within the variable value where
the year begins. The year should be a 2–digit value because a century value is
inserted in front of the 2–digit year for compare purposes.

The following meanings are associated with the condition-values:

EQ Specifies that the scan is to end when an equal condition exists
between the argument value and the row value. This is the default.

NE Specifies that the scan is to end when the row value is not equal to the
argument value.

LE Specifies that the scan is to end when the row value is less than or
equal to the argument value.

LT Specifies that the scan is to end when the row value is less than the
argument value.

GE Specifies that the scan is to end when the row value is greater than or
equal to the argument value.

TBSCAN

Chapter 2. Description of ISPF Services 253



GT Specifies that the scan is to end when the row value is greater than the
argument value.

Yn Can be used with LE, LT, GE, and GT. It must immediately follow one
of the four allowed condition-values. The Y indicates that the paired
variable name is a date variable that needs a century value added to a
2–digit year so that dates can be compared correctly. The n is a number
from 1 to 7 that gives the offset within the variable value where the
year is located.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Row does not exist, no match was found; CRP is set to TOP (zero). The
rowid remains unchanged.

12 Table is not open.

16 Variable value has been truncated, or insufficient space is provided to
return all extension variable names.

20 Severe error.

Example 1
For the table TELBOOK:

Move table TELBOOK’s CRP to the row that fulfills the search argument as
specified in a preceding TBSARG operation. For an example of TBSARG, see the
example in the TBSARG description in this chapter. Copy values from variables in
that row to function pool variables whose names match those of the table
variables.
ISPEXEC TBSCAN TELBOOK

Set the program variable BUFFER to contain:
TBSCAN TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBSCAN ','TELBOOK ');

Example 2
For the table TELBOOK:

Use the TBSCAN service to position the CRP of table TELBOOK to the row
containing the name JOHNSON in variable LNAME, and the zip code 08007 in

TBSCAN

254 z/OS V1R2.0 ISPF Services Guide



variable ZIPCODE. Copy values of the variables in that row to function pool
variables whose names match those of the table variables.
v Set function pool variable LNAME to JOHNSON.
v Set function pool variable ZIPCODE to 08007.
v Issue the following request:
ISPEXEC TBSCAN TELBOOK ARGLIST(LNAME,ZIPCODE)

Set the program variable BUFFER to contain:
TBSCAN TELBOOK ARGLIST(LNAME,ZIPCODE)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBSCAN ','TELBOOK ','(LNAME,ZIPCODE)');

If the return code is 0, the row was found and values were copied from the row
variables to function pool variables.

Example 3
Establish a search argument to be used by a TBSCAN operation of the table
DATETBL. Assume DATE1 to be a name variable in table DATETBL and that the
dates are in a yy/mm/dd format. Specify a scan direction of forward and
terminate the scan when the row value of DATE1 is greater than 99/01/31.
v Invoke TBVCLEAR for table DATETBL
v Set variable DATE1 to 99/01/31
v Issue the following TBSCAN request:
ISPEXEC TBSCAN DATETBL NEXT NAMECOND(DATE1,GTY1)

TBSKIP – Move the Row Pointer
The TBSKIP service moves the current row pointer (CRP) of a table forward or
backward by a specified number of rows and retrieves the row to which it is
pointing unless the NOREAD parameter is specified.

All variables in the row, including keys and extension variables, if any, are stored
into the corresponding dialog variables. A list of extension variable names can also
be retrieved.

Command Invocation Format
ISPEXEC TBSKIP table-name [NUMBER(number)]

[SAVENAME(var-name)]

[ROWID(rowid-name)]

[ROW(rowid)]

[NOREAD]

[POSITION(crp-name)]

TBSCAN

Chapter 2. Description of ISPF Services 255



Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBSKIP ', table-name [,number]

[,var-name]

[,rowid-name]

[,rowid]

[,'NOREAD ']

[,crp-name]);

Parameters
table-name

Specifies the name of the table to be used.

number
Specifies the direction and number of rows to move the CRP. This parameter
must be a positive or negative integer. A positive integer moves the CRP
toward the bottom of the table. A negative integer moves it toward the top.
Zero is an allowable value that results in retrieving the current row.

For a call, this parameter must be a fullword fixed binary number.

A default skip of +1 exists if the ROW and NUMBER parameters are both
omitted. When the ROW parameter is specified, no default skip of +1 is
assumed if the NUMBER parameter is omitted.

var-name
Specifies the name of a variable into which a list of extension variable names
contained in the row is stored. The list is enclosed in parentheses, and the
names within the list are separated by a blank.

rowid-name
Specifies the name of a variable in which a number that uniquely identifies the
row being accessed is to be stored. Later, this identifier can be specified in the
ROW parameter to cause the CRP to be positioned to the row. This identifier is
not saved on permanent storage by TBSAVE or TBCLOSE.

rowid
Specifies the numeric value that uniquely identifies the row to be accessed.
This value is obtained by using the ROWID(rowid-name) parameter.

A default skip of +1 exists if the ROW and NUMBER parameters are both
omitted. When the ROW parameter is specified, no default skip of +1 is
assumed if the NUMBER parameter is omitted.

NOREAD
Specifies that the variables contained in the requested row not be read into the
variable pool.

TBSKIP

256 z/OS V1R2.0 ISPF Services Guide



crp-name
Specifies the name of a variable in which the row number pointed to by the
CRP is to be stored. If the CRP is positioned to TOP, the row number returned
is zero.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 CRP would have gone beyond the number of rows in the table. This
includes a table empty condition, with CRP set to TOP (zero). The rowid
remains unchanged.

12 Table is not open.

16 Variable value has been truncated, or insufficient space is provided to
return all extension variable names.

20 Severe error.

Example
In the table TELBOOK, move the current row pointer (CRP) to the next row. After
the move, copy values from variables in that row to variables in the function
variable pool having names that are the same as the names of the variables in the
row.
ISPEXEC TBSKIP TELBOOK

Set the program variable BUFFER to contain:
TBSKIP TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBSKIP ','TELBOOK ');

TBSORT – Sort a Table
The TBSORT service places the rows of an open table in a user-specified order and
stores this specified order in a sort information record.

The sort can be done on more than one field and in either an ascending or
descending order. TBSORT can be issued for an empty table. When a TBSORT is
completed, the CRP is set to zero (top).

The sort can also be done by date without having to change the date variable to a
4 digit year. The PDF configuration table field YEAR2000 is used to determine a
century value to be appended to the existing 2 digit year values within the ISPF

TBSKIP

Chapter 2. Description of ISPF Services 257



table. The variable is only modified internally for compare purposes and no actual
change is made to data stored in the ISPF table.

The sort information record is maintained with the table. This record contains the
order of the “last-sort” and provides for rows to be added to the table in the
proper sequence after a sort has been completed. This is done through the ORDER
keyword on the TBADD, TBMOD, and TBPUT services. The sort information
record is saved on external storage when a TBSAVE or TBCLOSE operation
successfully completes. It is retrieved during TBOPEN processing.

Command Invocation Format
ISPEXEC TBSORT table-name FIELDS(sort-list)

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBSORT ', table-name, sort-list);

Parameters
table-name

Specifies the name of the table to be sorted.

sort-list
Specifies sort fields. The syntax is as follows:
(field-name1, B|C|N|Yn, A|D,field-name2, B|C|N|Yn, A|D, ...)

Each sort field-name must be either a KEY or NAME field. The first (left most)
field-name is the primary key (most significant) and the rows are then collated
based on the values of the field-names.

The field-name is followed by a sort field type designator. The sort field type
designator can have a value of ’C’ for a character sort, a value of ’N’ for a
numeric sort, a value of ’B’ for a binary sort, or a value of ’Yn’ for a year sort.
For English, where sorting is in EBCDIC sequence, specifying either C or B as
the sort field type designator causes the same sort order. For other languages,
where the character format can be other than EBCDIC, only B is to be specified
for a binary sort.

The ’Yn’ sort is treated as a character sort where the variable being sorted is a
date variable, with n being the offset of the beginning of a 2–byte year in the
variable. Internally within ISPF, the year is expanded to a 4–byte year using
the PDF configuration field YEAR2000 for calculating the century value.

The collating sequence for character sorts during DBCS and English sessions is
in EBCDIC order. This means, for example, that all lowercase letters precede
uppercase letters when sorting in an ascending sequence. For other languages,
a character sort is done such that both uppercase and lowercase, as well as
accented and non-accented versions of a letter, are sorted in the proper order.

The sort field type designator is followed by a sort sequence direction value.
The sort sequence direction value can be either ’A’ (ascending) or ’D’

TBSORT

258 z/OS V1R2.0 ISPF Services Guide



(descending). The field type designator and the sort sequence direction can be
omitted for the last named field only. They default to ’C’ (character) and ’A’
(ascending), respectively.

In some non-English languages, the comma is used in place of a decimal point.
To accommodate various language usages, three numeric representations are
supported: period, comma, and French representations.

Table 4. Decimal Point Representations

Convention Example Example Where Used

Period 1,234.56 0.789
Japan, Mexico, UK,
USA

Comma 1.234,56 0,789 Most other countries

French 1234,56 0,789 France, South Africa

The TBSORT service accommodates these three numeric representations. The
convention used is determined by the language of the session, specified by the
value of ZLANG in the system profile table. The current English version
accepts only the period, treating it as the delimiter of the whole and decimal
portion of a number. Sorting is based on the specified language convention.

The following restrictions apply to fields for a “numeric” type sort:
1. The field must be a decimal number and optionally can contain a plus (+)

or minus (-) sign. The decimal number can be either a whole number (for
example, 234) or a mixed number (for example, 234.56), composed of a
whole number followed by a decimal point. A decimal point is not required
after a whole number, but is required in a mixed number. (Under the
period convention, the decimal point is represented by a period (.); under
the comma or French conventions, the decimal point is represented by a
comma (,).) No other characters are allowed except leading blanks.

2. No numeric string can exceed 16 characters. This length value includes any
plus or minus sign, any blanks, or a decimal point.

3. The largest value that can be sorted is plus or minus 2147483647.
4. The string can have leading blanks following the sign character.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

12 Table is not open.

16 Numeric convert error.

20 Severe error.

TBSORT

Chapter 2. Description of ISPF Services 259



Notes on Performance:

1. The performance of TBSORT is not greatly affected by the starting order of the
table. However, a sort by year can affect performance because an internal
conversion to a 4–digit year must be done for each comparison.

2. A numeric sort affects performance because a conversion of two numbers must
be done for each comparison.

Example 1
Perform a sort on the LASTNAME field for table TELBOOK. Use the defaults of
“A” (ascending) and “C” (character).
ISPEXEC TBSORT TELBOOK FIELDS(LASTNAME)

Set the program variable BUFFER to contain:
TBSORT TELBOOK FIELDS(LASTNAME)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);
CALL ISPLINK ('TBSORT ','TELBOOK ','LASTNAME');

Example 2
Perform a sort on table MODSIZES. Sort on the field NAME, a character field, in
ascending sequence. Then sort on the field SIZE field, a numeric field, in
descending sequence.
ISPEXEC TBSORT MODSIZES FIELDS(NAME,C,A,SIZE,N,D)

Set the program variable BUFFER to contain:
TBSORT MODSIZES FIELDS(NAME,C,A,SIZE,N,D)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBSORT ','MODSIZES','(NAME,C,A,SIZE,N,D)');

TBSTATS – Retrieve Table Statistics
The TBSTATS service obtains statistical information for a table and saves the
information in variables specified in the service request.

Table statistics are maintained with each physical table member stored on
permanent storage. The TBSTATS service provides access to these statistics from a
dialog. The TBSTATS service also provides status information regarding the current
usage of a specified table.

The statistics for a given table are available whether the table is open or closed.
The statistics reflect the table as it exists on the input table file, except when the
table is open in the logical screen where the TBSTATS service is issued. The
statistics then reflect the version of the table that is currently open.

The existence of a table can be checked by the value in the STATUS1 field. If the
table does not exist, no other processing takes place.

TBSORT

260 z/OS V1R2.0 ISPF Services Guide



The following statistical information is available:
v Date the table was created
v Time the table was created
v Date of last update
v Time of last update
v Last user to update the table
v Number of rows when the table was created
v Current number of rows (zero if the table is empty)
v Number of existing rows that have been updated
v Number of times the table has been updated
v Last table service issued for the table. The table must be open.
v Return code associated with the last table service. The table must be open.
v Whether the table is available for WRITE mode processing
v Whether the table exists in the table input file chain
v Whether the table is open for this logical screen.

For statistical purposes, two table processes have been defined. The “create
process” is defined as beginning with the TBCREATE and ending with a TBCLOSE
or TBEND. The “update process” is defined as beginning with the TBOPEN and
ending with a TBCLOSE or TBEND.

Command Invocation Format
ISPEXEC TBSTATS table-name [CDATE(date-created-name)]

[CTIME(time-created-name)]

[UDATE(date-updated-name)]

[UTIME(time-updated-name)]

[USER(user-name)]

[ROWCREAT(row-created-name)]

[ROWCURR(rownum-name)]

[ROWUPD(row-updated-name)]

[TABLEUPD(table-updated-name)]

[SERVICE(service-name)]

[RETCODE(return-code-name)]

[STATUS1(status1-name)]

[STATUS2(status2-name)]

[STATUS3(status3-name)]

[LIBRARY(library)]
[CDATE4D(date-created-name-4-digit)]
[UDATE4D(date-updated-name-4-digit)]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBSTATS ', table-name [,date-created-name]

TBSTATS

Chapter 2. Description of ISPF Services 261



[,time-created-name]

[,date-updated-name]

[,time-updated-name]

Parameters
table-name

Specifies the name of the table for which statistical information is to be
obtained.

date-created-name
Specifies the name of a variable where the date the table was created is to be
stored. The date is returned in the form YY/MM/DD.

time-created-name
Specifies the name of a variable where the time the table was created is to be
stored. The time is returned in the form HH.MM.SS.

date-updated-name
Specifies the name of a variable where the date the table was last updated is to
be stored. The date is returned in the form YY/MM/DD.

time-updated-name
Specifies the name of a variable where the time the table was last updated is to
be stored. The time is returned in the form HH.MM.SS.

user-name
Specifies the name of a variable where the userid of the user that created or
last updated the table is to be stored.

row-created-name
Specifies the name of a variable where the number of rows that existed at the
end of the “create process” is to be stored.

[,user-name]

[,row-created-name]

[,rownum-name]

[,row-updated-name]

[,table-updated-name]

[,service-name]

[,return-code-name]

[,status1-name]

[,status2-name]

[,status3-name]

[,library])
[,date-created-name-4-digit]
[,date-updated-name-4-digit];

TBSTATS

262 z/OS V1R2.0 ISPF Services Guide



rownum-name
Specifies the name of a variable where the number of rows contained in the
table is to be stored.

row-updated-name
Specifies the name of a variable where the number of updated rows is to be
stored. This is the number of existing rows that have been updated by TBPUT
or TBMOD. During the “update process,” rows that are added to the table are
included in this number. Any row that increments this number, when deleted,
will decrement this number.

table-updated-name
Specifies the name of a variable where the number of times this table has been
updated is to be stored. This is the number of “update processes” that have
occurred in which at least one row has been updated.

service-name
Specifies the name of a variable where the last table services command issued
for this table is to be stored. This value is returned only if the table is currently
open for the same logical screen.

return-code-name
Specifies the name of a variable where the return code associated with the last
table services command issued for this table is to be stored. This value is
returned only if the table is currently open to the same logical screen.

status1-name
Specifies the name of a variable where the status of the table in the table input
library chain is to be stored. Values that can be stored and their meanings are:
1 = table exists in the table input library chain 2 = table does not exist in the
table input library chain 3 = table input library is not allocated.

status2-name
Specifies the name of a variable where the status of the table in this logical
screen is to be stored. Values that can be stored and their meanings are: 1 =
table is not open in this logical screen 2 = table is open in NOWRITE mode in
this logical screen 3 = table is open in WRITE mode in this logical screen 4 =
table is open in SHARED NOWRITE mode in this logical screen 5 = table is
open in SHARED WRITE mode in this logical screen.

status3-name
Specifies the name of a variable where the availability of the table to be used
in WRITE mode is to be stored. Values that can be stored and their meanings
are: 1 = table is available for WRITE mode 2 = table is not available for WRITE
mode.

library
Specifies the ddname of a FILEDEF command or the lib-type of the LIBDEF
service request that defines an optional input file definition and provides
control for the table input source. If omitted, the default is ISPTLIB.

date-created-name-4–digit
Specifies the name of a variable where the date the table was created is to be
stored. The date is returned in the form YYYY/MM/DD.

date-updated-name-4–digit
Specifies the name of a variable where the date the table was last updated is to
be stored. The date is returned in the form YYYY/MM/DD.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

TBSTATS

Chapter 2. Description of ISPF Services 263



buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion (returned even if the table does not exist).

16 Variable value has been truncated.

20 Severe error.

Example
Determine the date when the table TELBOOK was created and when it was last
updated.
ISPEXEC TBSTATS TELBOOK CDATE(DATE1) UDATE(DATE2)

Set the program variable BUFFER to contain:
TBSTATS TELBOOK CDATE(DATE1) UDATE(DATE2)

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBSTATS ','TELBOOK ','DATE1 ','DATE2 ');

TBTOP – Set the Row Pointer to the Top
The TBTOP service sets the current row pointer (CRP) to the top of a table, ahead
of the first row.

Command Invocation Format
ISPEXEC TBTOP table-name

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBTOP ', table-name);

Parameters
table-name

Specifies the name of the table to be used.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

TBSTATS

264 z/OS V1R2.0 ISPF Services Guide



buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

12 Table is not open.

20 Severe error.

Example
For the table TELBOOK, move the current row pointer (CRP) to the row
immediately before its first row.
ISPEXEC TBTOP TELBOOK

Set the program variable BUFFER to contain:
TBTOP TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBTOP ','TELBOOK ');

TBVCLEAR – Clear Table Variables
The TBVCLEAR service sets dialog variables to nulls.

All dialog variables that correspond to columns in the table, specified when the
table was created, are cleared.

The contents of the table and the position of the current row pointer (CRP) are not
changed by this service.

Command Invocation Format
ISPEXEC TBVCLEAR table-name

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('TBVCLEAR', table-name);

Parameters
table-name

Specifies the name of the table to be used.

TBTOP

Chapter 2. Description of ISPF Services 265



buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

12 Table is not open.

20 Severe error.

Example
Clear dialog variables associated with the table TELBOOK.
ISPEXEC TBVCLEAR TELBOOK

Set the program variable BUFFER to contain:
TBVCLEAR TELBOOK

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('TBVCLEAR','TELBOOK ');

TRANS – Translate CCSID Data
The TRANS dialog service translates data from one Coded Character Set Identifier
(CCSID) to another. A maximum variable size of 32767 bytes of data can be
translated. There is no automatic transformation of single-byte to double-byte data
or visa versa. This service is available through the ISPEXEC and ISPLINK
interfaces. See the ISPF Dialog Developer’s Guide and Reference

Command Invocation Format
ISPEXEC TRANS FRMCCSID(from-ccsid-number) TOCCSID(to-ccsid-number)

FROMVAR(from-variable-name) [TOVAR(to-variable-name)]

[LENGTH(data-length)]

Call Invocation Format
CALL ISPEXEC (buflen, buffer)

OR

CALL ISPLINK ('TRANS ',from-ccsid-number,to-ccsid-number,from-variable-name
[,to-variable-name]
[,data-length]);

TBVCLEAR

266 z/OS V1R2.0 ISPF Services Guide



Parameters
from-ccsid-number

Required parameter. The from-ccsid-number is a 5-digit decimal (5 character
position) number that specifies the current CCSID of the variable data before
translation.

to-ccsid-number
Required parameter. The to-ccsid-number is a 5-digit decimal (5 character
position) number that specifies the CCSID the variable data will be translated
to.

from-variable-name
Required parameter. Specifies the name of a dialog variable that contains the
source data to be translated. The translated data is returned in this variable if
the TOVAR parameter is omitted.

to-variable-name
Optional parameter. Specifies the name of a dialog variable that receives the
translated data. A truncation error occurs if this variable is not large enough to
hold the translated data. Only the translated data is stored in this variable. The
translated data is returned in the dialog variable identified by the FROMVAR
parameter if this parameter is omitted.

data-length
Optional parameter. The length of data in the source variable that is translated.
This number must be an integer from 0 to 32 767. A zero value results in this
parameter being ignored. For call invocation, this parameter must be a
fullword fixed binary number. If this parameter is specified, the smaller of its
value and the length of source variable data is used. If this parameter is
omitted, the length of the source variable data determines the amount of data
that is translated. Only the translated data is stored in the receiving variable.

Return codes
0 Service completed successfully.

4 Translate tables do not support the requested “to ... from” combination. For
a list of extended code page translate tables provided by ISPF, see the ISPF
Dialog Developer’s Guide.

8 From variable not found.

16 Variable services indicated a translation error or truncation occurred
storing the translated data.

20 Severe error.

VCOPY – Create a Copy of a Variable
This service is used only with CALL ISPLINK or CALL ISPLNK calls.

The VCOPY service allows a program module to obtain a copy of dialog variables.
The copied data is in character string format and can be accessed in either “locate”
or “move” mode.

The variable names can be specified as a single 8-character value, a list enclosed in
parentheses, or a name-list structure. In LOCATE mode an array of pointers must
be supplied to receive the data address. An array of lengths must be supplied to
receive the data lengths.

TRANS

Chapter 2. Description of ISPF Services 267



In locate mode, the VCOPY service automatically allocates storage for the data,
and returns the address and length of each variable to the caller.

In move mode, an array of lengths must be supplied on input. Its values map the
structured area which must be supplied to receive the data. The caller first
allocates storage for the data, and then invokes VCOPY, passing the address and
length of the storage area into which the data is to be copied. The length array is
then set with the data lengths.

When a variable has been masked and is accessed by VCOPY, the output string
will contain the mask characters. When specifying the length to receive these
variables on the VCOPY call, the length should be as long as the mask, not the
defined variable. See “VMASK – Mask and Edit Processing” on page 294 for a full
description of the VMASK service.

As with other DM component services, the search for each variable starts with the
defined area of the function pool, followed by the function’s implicit area, followed
by the shared pool, and then the profile pool. If a variable of the specified name is
not found, VCOPY issues a return code of 8.

Command Invocation Format
ISPEXEC *This service does not apply to APL2 or command

procedures*

Call Invocation Format
CALL ISPEXEC *This service cannot be used with this interface*

OR

CALL ISPLINK ('VCOPY ', name-list, length-array, value-array

[,'LOCATE '|'MOVE '] );

Parameters
name-list

Specifies an area containing the names of dialog variables to be copied. The
standard name-list format is used.

length-array
Specifies an array of fullword fields containing the lengths of the data areas for
the dialog variable values. The array can consist of a single item. In move
mode, each element of the array is set by the caller to the output area size. In
move or locate mode, each element of the array is set by the service to the
number of bytes of data for the corresponding variable. The length does not
include trailing blanks unless the variable is defined to maintain blanks. For
example:
v VCOPYing a variable that was defined using VDEFINE with the NOBSCAN

option
v VCOPYing a REXX variable that was explicitly set with trailing blanks and

then VPUT to the SHARED or PROFILE pool.

value-array
In locate mode, specifies the name of an array that contains pointers to fields
into which the copied variables are placed. The array can consist of a single
item. In move mode, specifies the name of a structure that is mapped by the
length array.

VCOPY

268 z/OS V1R2.0 ISPF Services Guide



LOCATE
Specifies locate mode. The address of the copied value is returned to the user
invoking the service. This is the default mode.

MOVE
Specifies move mode. The copied value is returned to the user invoking the
service.

Return Codes
The following return codes are possible:

0 Normal completion.

8 One or more variables do not exist.

12 Validation failed.

16 Truncation has occurred during data movement (move mode only).

20 Severe error.

Example
Copy the value in dialog variable QROW to a field named QROWSDATA in this
PL/I program module. Perform the copy in move mode, as opposed to locate
mode. Variable L8 contains a value of 8.
CALL ISPLINK ('VCOPY ','QROW ',L8,QROWDATA,'MOVE ');

VDEFINE – Define Function Variables
The VDEFINE service is used only with CALL ISPLINK or CALL ISPLNK calls.

The VDEFINE service is invoked by a program to give ISPF the ability to use
dialog variable names to directly access variables within the particular program
module. In the call to VDEFINE, the program specifies the format (character string,
fixed binary, bit string, hex, float, pack(n), binstr, DBCS, or user-defined) and
length of the variables. Stacking of definitions for a particular dialog variable can
be achieved by successive calls to VDEFINE for that dialog variable.

When the VDEFINE service is called, ISPF enters the dialog variable names into
the function pool for the dialog function currently in control. Dialog variables
entered in the function pool by use of the VDEFINE service are called defined
variables to distinguish them from implicit variables in the function pool.

A list of dialog variables can be defined with a single call to the VDEFINE service.
The program variables that correspond to the dialog variables defined to ISPF by
VDEFINE must be in contiguous locations in storage or defined as an array or
structure within the program. Also, unless you specify LIST as an option in the
options list referred to by the service request, all variables must have the same
format and length. The program variable name passed to ISPF must be the name
of the first variable as defined in the program, the name of the array, or the name
of the structure.

When the LIST option is used, programs can VDEFINE only selected application
variables in a dialog application structure. This is accomplished by specifying an
asterisk (*) as a placeholder in the name-list and in the corresponding position in
the format definition array for those portions of dialog application storage that are
not to be considered by VDEFINE. The * place-holder (in the name-list and the
format) allows ISPF to determine the address of the dialog application storage of

VCOPY

Chapter 2. Description of ISPF Services 269



the next true variable name in the name-list. This is determined by the
corresponding length in the length array parameter.

Prior to issuing the VDEFINE service request (with the LIST parameter specified)
the function must create two arrays to specify the formats and lengths of the
variables to be defined. The first array defines, in sequence, the format (character
string, fixed binary, and so forth) of each variable. The second array defines, in
sequence, the length (in bytes) of each variable. Variable names in the name-list
that you specify on the VDEFINE request must be in the same relative positions as
the corresponding format and length definitions in the arrays.

Exit Routine
The dialog writer can specify an exit routine to define dialog variables when
program variables are in non-standard formats, formats other than BINSTR, BIT,
CHAR, DBCS, FLOAT, FIXED, HEX, PACK, or PACK(N). When a variable is then
accessed by any DM component service, the exit routine is invoked to perform any
conversion necessary between the program variable’s format and the character
string format required for a dialog variable.

Command Invocation Format
ISPEXEC *This service does not apply to APL2 or command

procedures*

Call Invocation Format
CALL ISPEXEC *This service cannot be used with this interface*

OR

CALL ISPLINK ('VDEFINE ', name-list, variable, format, length

[,options-list]

[,user-data] [,'LFORMAT']);

Parameters
name-list

Specifies the symbolic name or name-list to be used by ISPF when referencing
the specified variables.

An asterisk, in conjunction with the USER format keyword described below,
specifies that the exit routine, whose address is specified in the user-data
parameter, is to be called for variables not found in the function pool.

An asterisk (*) in the name-list, in conjunction with an asterisk in the format
parameter described below, specifies that the storage represented by the
corresponding physical length in the length parameter is to be skipped when
calculating the address of the next name in the name-list. When this facility is
used, LIST must be specified in the options-list parameter.

variable
Specifies the variable whose storage is to be used. If a name list is passed, this
storage contains an array of variables. The number of names in the list
determines the dimension of the array.

When LIST is specified for options-list, this parameter is the name of a variable
or structure whose storage is used for dialog variables in the name list. This

VDEFINE

270 z/OS V1R2.0 ISPF Services Guide



storage is assigned to dialog variables in the order that they appear in the
name-list, and according to the length array mapping.

format
Specifies the data conversion format.

When LIST is specified for options-list, this parameter is the name of an array
of CHAR(8) fields, one for each variable in the name-list. Each element of this
array defines the data format of the variable in the corresponding position in
the name-list. Entries must be left-justified and padded with blanks. There
must be at least as many array elements as there are names in the name-list.
You can use an asterisk in the format list to have application storage not be
considered by VDEFINE. See the previous discussion under the name-list
parameter.

Valid formats are:

BINSTR — Binary String
ISPF provides the binary string data format to support dialog applications
written in the C language. It treats the data format exactly like the
character string format, except in the manner in which it handles the
padding of character strings. When a variable defined as BINSTR is
updated in the function pool, ISPF pads with binary zeros, rather than
blanks. This is desirable within C function programs, because the C
language uses binary zeros to mark the end of a character string.

In updating this type of variable, ISPF stores only up to “length − 1”
amount of significant data and places a null terminator in the last position.
Since the updated data contains the binary zero, the length of the variable
should be greater than 1.

BIT
Bit string, represented by the characters 0 or 1. Within the variable, the
data is left-justified and padded on the right with binary zeros. For these
variables, a null value is stored as binary zeros and cannot be
distinguished from a zero value.

CHAR
Character string. Within the variable, the data is left-justified and padded
on the right with blanks.

No data conversion is performed when fetching and storing a CHAR
variable, nor is there any checking for valid characters. In PL/I, a character
string to be used as a dialog variable must be declared as fixed length,
because VDEFINE cannot distinguish variable-length PL/I strings.

DBCS
DBCS string. Within the variable, the data is left-justified and padded on
the right with blanks. The variable must not contain shift-out or shift-in
characters and it must be even in length.

No data conversion is performed when fetching and storing a DBCS
variable, nor is there any checking for valid characters.

FIXED
Fixed binary integer, represented by the characters 0–9.

Fixed variables that have a length of 4 bytes (fullword) are treated as
signed, represented by the absence or presence of a leading minus sign (−).
They can also have a null value, which is stored as the maximum negative
number (X’80000000’).

VDEFINE

Chapter 2. Description of ISPF Services 271



Fixed variables that have a length of less than 4 bytes are treated as
unsigned. For these variables, a null value is stored as binary zeros, and
cannot be distinguished from a zero value.

FLOAT — Floating Point
The floating point data format is used for variables consisting of numeric
values stored in characteristic/mantissa form.

Format type FLOAT dialog variables are displayed (and stored in the
shared and profile pool) in character representation with the decimal
separator.

Floating point numbers are processed as real numbers. A single-precision
number is processed as a 32-bit real number and can have 7 or 8
significant digits. A double-precision number is processed as a 64-bit real
and can have 13 or 14 significant digits. For single-precision floating point
numbers, up to 7 digits is displayed as a real number. Any number greater
than 7 digits is represented in exponential notation.

For example, for short floating point numbers,

VALUE REPRESENTATION

1234567 1234567

12345678 1.234568E⁺⁰⁷

123.4567 123.4567

123.45678 123.4568

For double-precision floating point numbers, the limit is 13 digits.

The length that you specify for this type must equal the total number of
bytes of program storage that the variable uses. FLOAT variables can have
a length of 4 or 8 bytes. A FLOAT variable defined with a length of 4 bytes
is considered single precision and with 8 bytes is considered double
precision.

The magnitude (M) of a floating point number supported by ISPF is:
5.4 × 10j⁷⁹ ≤ M ≤ 7.2 × 10⁺⁷⁵

ISPF converts floating point numbers between the real number and
character formats. Because of this conversion, rounding is not predictable
for single precision numbers when the digit being rounded is a 5.

HEX
Bit string, represented by the characters 0–9 and A–F. Within the variable,
the data is left-justified and padded on the right with binary zeros. For
these variables, a null value is stored as binary zeros and cannot be
distinguished from a zero value.

PACK | PACK(n) — Packed Decimal
The packed decimal data format provides support for COBOL and
corresponds to a COBOL COMP-3 data type. Packed decimal variables
consist of right-justified numeric values stored such that each decimal digit
takes up one-half byte. All bytes contain 2 decimal digits, except for the
last byte in the variable. The last byte consists of the least significant
decimal digit followed by a representation of the sign. The maximum

VDEFINE

272 z/OS V1R2.0 ISPF Services Guide



number of digits in a PACKed variable is 18 as specified by ANSI COBOL
standard. This results in the number of digits always being an odd
number.

The valid values to represent the sign are the hexadecimal digits C for
positive and D for negative. If the sign is any other hexadecimal digit, the
value is considered to be unsigned.

The length that you specify for this type must equal the total number of
bytes of program storage that the variable uses. PACK variables can have a
length of 1–10 bytes.

When you define a variable as having a PACK(n) data format, n specifies
the number of digits to appear to the right of the assumed decimal point.
For example, the value of a variable when defined is 12345. The assumed
decimal position would occur before the 1 if defined as PACK(5), after the
1 if defined as PACK(4), after the 2 if defined as PACK(3), and so on.
PACK without (n) specified is equivalent to PACK(0).

Variables defined as PACK or PACK(n) are converted to character
representation when retrieved from the function pool. If the variable is
defined as PACK(n), and n is greater than zero, the converted number will
contain a decimal separator followed by n digits after the assumed decimal
point.

When a variable defined as PACK(n) is updated in the function pool, ISPF
will pad the variable with zeros or truncate on either end to ensure the
variable contains the correct number of digits to the right of the assumed
decimal separator.

The value of n must be in the range 0–18.

USER
Specifies that the format is to be determined by the user. Any conversion
format is allowed. A conversion routine must be specified and is specified
by naming it in the user-data parameter, described below.

length
Specifies the length of the variable storage, in bytes. This parameter must
be a fullword fixed binary integer. The maximum length for a FIXED
variable is 4 bytes, for PACK(n) variables is 10 bytes, and for FLOAT
variables is 8 bytes. The maximum length for other types of variables is
32767 bytes.

For character variables in a C program, this length should be one less than
the length of the program variable. This allows for the null terminator at
the end of the string. Always initialize variables for the length specified in
this parameter, unless you are using the BINSTR parameter.

When LIST is specified as an option in the options-list, this parameter is
the name of an array of fullword fixed binary integers. Each element of
this array defines the data length of the variable in the corresponding
position of the name-list. There must be at least as many array elements as
there are names in the name-list.

options-list
Specifies initialization of the defined storage and/or retention of trailing
blanks in variable data. The options-list parameters are COPY, NOBSCAN,
and LIST. They are specified in the name-list format.

VDEFINE

Chapter 2. Description of ISPF Services 273



Note: Option-list parameters cannot be specified if the USER format
keyword and a name-list of asterisk (*) have been selected.

COPY
Specifies that any dialog variable with the same name can be used to
initialize the defined storage. The variable pools are searched in the
standard function pool, shared pool, profile pool sequence.

NOBSCAN
Specifies that any trailing blanks in the variables are to remain in the
variables.

LIST
Specifies that the variables in the name-list to be defined to ISPF are of
varying formats (format array) and lengths (length array).

When the LIST option is used, programs can VDEFINE only selected
application variables in a dialog application structure. This is
accomplished by specifying an asterisk (*) as a placeholder in the
name-list and in the corresponding position in the format definition
array for those portions of dialog application storage that are not to be
considered by VDEFINE. The asterisk place-holder (in the name-list
and the format) allows ISPF to determine the address of the dialog
application storage of the next true variable name in the name-list. This
is determined by the corresponding length in the length array
parameter.

user-data
Specifies the storage location that contains the entry point address of
the conversion subroutine followed by any other data that should be
passed to the routine.

The exit is given control in 31-bit mode if either the VDEFINE dialog
service is invoked in 31-bit mode or the high-order bit of the user-exit
address is on as specified for the VDEFINE service. The high-order bit
contains the AMODE and the remainder of the word contains the
address. If bit 0 contains 1, the exit routine is given control in 31-bit
addressing mode.

This parameter is specified whenever the USER parameter is specified.

LFORMAT
Indicates the specified name-list variables all have the same format.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Variable not found.

16 Data truncation occurred.

20 Severe error.

Example 1
Establish ISPF accessibility, using the name MSGNAME, to a field named ERRMSG
in this PL/I module. The field is a character string and is 8 bytes long. Program
variable L8 contains a value of 8.
CALL ISPLINK ('VDEFINE ','(MSGNAME)',ERRMSG,'CHAR ',L8);

VDEFINE

274 z/OS V1R2.0 ISPF Services Guide

|
|



Example 2
Define three variables (FVAR, CVAR, and DVAR) with data formats of FIXED,
CHAR, and DBCS, and with lengths of 4, 5, and 20, respectively.
DECLARE

1 VARS,
3 FVAR FIXED BIN(31),
3 CVAR CHAR(5),
3 DVAR CHAR(20),

FARR(3) CHAR(8),
LARR(3) FIXED BIN(31);

FARR(1) = 'FIXED';
FARR(2) = 'CHAR';
FARR(3) = 'DBCS';
LARR(1) = 4;
LARR(2) = 5;
LARR(3) = 20;

CALL ISPLINK ('VDEFINE ','(FVAR CVAR DVAR)',
VARS,FARR,LARR,'LIST ');

Example 3
Define two dialog variables, VAR1 and VAR2, contained in a structure. The name
of the structure is STRCVARS and contains other data that is not used.

┌─────────┬───────┬──────────────────┐
o VAR1 o * o VAR2 o
└─────────┴───────┴──────────────────┘

offset 1 5 8 9 16

DECLARE

1 STRCVARS,
3 VAR1 FIXED BIN(31),
3 FILLER CHAR(4),
3 VAR2 CHAR(8)

FARR(3) CHAR(8),
LARR(3) FIXED BIN(31);

FARR(1) = 'FIXED ';
FARR(2) = '*';
FARR(3) = 'CHAR ';
LARR(1) = 4;
LARR(2) = 4;
LARR(3) = 8;

CALL ISPLINK('VDEFINE ','(VAR1 * VAR2)',
STRCVARS,FARR,LARR,'LIST ');

VDEFINE Exit Routine
The dialog writer can specify an exit routine to define dialog variables when
program variables are non-standard (other than BINSTR, BIT, CHAR, DBCS,
FLOAT, FIXED, HEX, PACK, or PACK(N)). Then, when a variable is accessed by
any DM component service, the exit routine is invoked to perform any conversion
necessary between the program variable’s format and the character string format
required for a dialog variable.

The dialog writer must specify the following information in the dialog function
that VDEFINEs the variables to be formatted by the exit routine.
1. A storage location must be defined that contains the entry point address of the

user exit and any other user data that should be passed to the exit routine. For
example:

VDEFINE

Chapter 2. Description of ISPF Services 275



DECLARE USERXT EXTERNAL ENTRY; /*USERXT IS THE NAME OF THE*/
/*EXIT ROUTINE */

DECLARE 1 XITINFOR,
2 XITPTR ENTRY VARIABLE,
2 USERDATA CHARACTER; /*CONTAIN ANY USER DATA TO */

/*BE PASSED TO THE EXIT */
/*ROUTINE */

2. The VDEFINE must specify a format of USER and specify the area that
contains the address of the exit routine and the user data field. If the defined
variable name is ’*’, all unresolved dialog variable accesses result in the call of
the exit routine. Unresolved dialog variables are those that were not implicitly
entered or defined in the function pool.
ISPLINK ('VDEFINE ', '(VAR )', VAR,

'USER ', 4, ' ', XITINFOR)

ISPF invokes the exit routine using a call (BALR 14,15), and standard OS linkage
conventions must be followed. The parameters passed by ISPF to the exit routine
are shown on the call. The exit is invoked with:
CALL XRTN( UDATA, /* invoke exit and pass user area */

SRVCODE, /* request code */
NAMESTR, /* name length and name chars */
DEFLEN, /* defined area length */
DEFAREA, /* defined area */
SPFDLEN, /* ISPF data length */
SPFDATAP); /* ISPF data address */

UDATA
An area that follows the exit routine address parameter, specified on the
VDEFINE statement. This area can contain any additional information the user
desires. Its format is CHAR(*).

If more than one variable is defined using the same exit routine, the dialog
must ensure that the length and address of the converted data for each
variable are returned to ISPF in unique locations. Otherwise, unexpected
results can occur if a service, such as TBADD, is called with two or more of
these variables.

In the example, UDATA points to an area that contains addresses for SPFDLEN
and SPFDATAP to be used for the variable VAR.

SRVCODE
Service request-type code, as a fullword fixed value. The allowable values are 0
for a read and 1 for a write. Other values should be accepted without error, in
order to allow further extensions. Codes of 2 and 3 are used by the dialog test
facility variable query function. Code 2 is a request for the number of variables
to be returned in the SPFDLEN field. Code 3 is a request for the names of the
variables to be returned in the buffer pointed to by SPFDATAP. The names are
entered as contiguous 8-byte tokens.

NAMESTR
Name of the dialog variable being requested, preceded by the one-byte name
length.

DEFLEN
The length of the area specified to the VDEFINE service. Its format is a
fullword fixed value.

DEFAREA
The area specified to the VDEFINE service. Its format is CHAR(*).

SPFDLEN
For a write request, the length of the SPFDATA area is supplied by ISPF to the

VDEFINE

276 z/OS V1R2.0 ISPF Services Guide



exit routine. For a read request, the length of the data is returned to ISPF. It
must be supplied by the exit routine. Its format is a fullword fixed value.

SPFDATAP
For a write request, the address of the data to be stored is supplied by ISPF to
the exit routine. For a read request, the address of the data is returned to ISPF.
Its format is a fullword pointer.

Return Codes
The following return codes are possible and should be set in the exit routine:

0 Successful operation.

8 Variable not found on read request.

Others
Severe error

Example of Using the VDEFINE Exit
*******************************************************************
* THIS CSECT, NAMED USERXT, IS A SIMPLE EXAMPLE OF A *
* VDEFINE EXIT. ITS PURPOSE IS TO ILLUSTRATE HOW TO *
* USE THE VDEFINE EXIT INTERFACE. USERXT CONVERTS BINARY *
* DATA IN A PROGRAM TO CHARACTER DATA USED BY ISPF. *
* GENERALLY, AN EXIT ROUTINE IS NOT REQUIRED TO DO THIS *
* CONVERSION, BECAUSE ISPF PROVIDES THE CAPABILITY TO DO *
* THE CONVERSION. *
* *
* THIS EXAMPLE ASSUMES THAT ALL VARIABLES PASSED FOR *
* CONVERSION HAVE BEEN EXPLICITLY DEFINED TO ISPF *
* (USING THE VDEFINE SERVICE), AND ARE, THEREFORE, IN THE *
* FUNCTION POOL. IT DOES NOT TAKE INTO CONSIDERATION THE *
* CASE OF AN ASTERISK (*) BEING SPECIFIED FOR THE *
* NAME-LIST PARAMETER OF THE VDEFINE SERVICE. SEE THE *
* VDEFINE SERVICE DESCRIPTION FOR MORE INFORMATION. *
* *
* USERXT IS INVOKED BY ISPF USING A CALL (BALR 14,15) AS *
* SHOWN BELOW. STANDARD OS LINKAGE CONVENTIONS MUST BE *
* FOLLOWED. USERXT IS INVOKED AS FOLLOWS: *
* CALL USERXT( UDATA, /* USER DATA */*
* SRVCODE, /* SERVICE REQUEST CODE */*
* NAMESTR, /* NAME LENGTH AND NAME */*
* DEFLEN, /* LENGTH OF AREA SPECIFIED TO */*
* VDEFINE */*
* DEFAREA, /* AREA SPECIFIED TO VDEFINE */*
* SPFDLEN, /* ISPF DATA LENGTH */*
* SPFDATAP);/* ISPF DATA ADDRESS */*
* *
* *
*******************************************************************
USERXT CSECT

STM 14,12,12(13) * STANDARD LINKAGE *
BALR 12,0
USING *,12
ST 13,SAVE+4
LA 15,SAVE
ST 15,8(13)
LR 13,15

******************************************************************
* DETERMINE SERVICE REQUESTED. A SRVCODE OF 0 IS A READ REQUEST *
* AND A SRVCODE OF 1 IS A WRITE REQUEST. *
******************************************************************

L 2,4(1) * OBTAIN SRVCODE PARAMETER *
XR 3,3 * GET 0, 0 REPRESENTS A READ *
C 3,0(2) * COMPARE THE SRVCODE TO 0 *
BE READ * BRANCH TO READ IF SRVCODE IS 0 *

VDEFINE

Chapter 2. Description of ISPF Services 277



LA 3,1 * GET 1, 1 REPRESENTS A WRITE *
C 3,0(2) * COMPARE THE SRVCODE TO 1 *
BNE END * BRANCH TO THE END IF NOT A WRITE *

******************************************************************
* FOR A WRITE REQUEST THE LENGTH OF THE SPFDATA AREA IS SUPPLIED *
* AND THE ADDRESS OF THE DATA TO BE STORED IS SUPPLIED. THE *
* DEFAREA WILL BE UPDATED WITH THE CONVERTED DATA. *
******************************************************************
WRITE L 2,20(1) * OBTAIN SPFDLEN PARAMETER *

L 4,0(2) * *
ST 4,SPFLEN * SAVE THE SPFDLEN PARAMETER *
S 4,ONE * DECREMENT BY ONE FOR EXECUTE *
L 5,WRKLEN * OBTAIN LENGTH OF THE WRKAREA *
XR 4,5 * COMBINE THE EXECUTE LENGTHS *
L 2,24(1) * OBTAIN SPFDATAP PARAMETER *
L 3,0(2) * *
XC WRKAREA,WRKAREA * CLEAR THE WRKAREA *
EX 4,PACK * EXECUTE THE PACK COMMAND *
CVB 6,WRKAREA * CONVERT THE DATA TO BINARY *
ST 6,TEMP * STORE THE CONVERTED DATA *
L 2,16(1) * OBTAIN THE DEFAREA PARAMETER *
MVC 0(4,2),TEMP * STORE CONVERTED DATA IN DEFAREA *
B END

******************************************************************
* FOR A READ REQUEST THE LENGTH OF THE DATA AND THE ADDRESS OF *
* THE DATA ARE RETURNED TO ISPF. THE DATA AND ITS LENGTH ARE *
* OBTAINED FROM THE DEFAREA AND DEFLEN. *
******************************************************************
READ XC WRKAREA,WRKAREA * CLEAR THE WRKAREA *

L 5,0(1) * ADDRESS OF USER DATA *
USING UDATA,5 * GET ADDRESSABILITY *
L 2,16(1) * OBTAIN THE DEFAREA PARAMETER *
L 6,0(2) * OBTAIN THE DATA *
CVD 6,WRKAREA * CONVERT THE DATA TO DECIMAL *
L 7,CONVADD * ADDRESS TO STORE CONVERTED DATA*
UNPK 0(7),WRKAREA * UNPACK THE DATA *
MVZ 14(1,7),0(7) * MOVE THE ZONE *
L 2,24(1) * OBTAIN THE SPFDATAP PARAMETER *
ST 7,0(2) * RETURN THE ADDRESS OF THE DATA *
L 7,CONVLNG * ADDR TO STORE CONV DATA LENGTH *
L 4,FIFTEEN * RETURN THE LENGTH OF THE DATA *
ST 4,0(7) * *
L 2,20(1) * OBTAIN THE SPFDLEN PARAMETER *
ST 7,0(2) * RETURN THE LENGTH OF THE DATA *

END SR 15,15 * SET GOOD RETURN CODE *
L 13,SAVE+4 * STANDARD EXIT LINKAGE *
L 14,12(13)
LM 0,12,20(13)
BR 14
DS 0H

PACK PACK WRKAREA(0),0(0,3)
SAVE DC 18F'0' * REGISTER SAVE AREA *
WRKAREA DS D * CONVERSION WORKAREA *
SPFLEN DS F * LENGTH OF DATA FROM ISPF *
TEMP DS F * CONVERSION TEMPORARY AREA *
ONE DC F'1' * CONSTANT 1 *
FIFTEEN DC F'15' * LENGTH OF OUTDATA *
WRKLEN DC X'00000070' * LENGTH OF WRKAREA FOR EXECUTE *
UDATA DSECT * USER DATA *
CONVLNG DS AL(4) * ADDRESS OF CONV DATA LENGTH *
CONVADD DS AL(4) * ADDRESS OF CONV DATA *

END USERXT

VDEFINE

278 z/OS V1R2.0 ISPF Services Guide



VDELETE – Remove a Definition of Function Variables
The VDELETE service is used only with CALL ISPLINK or CALL ISPLNK calls.

The VDELETE service removes variable names, previously defined by the program
module, from the function pool. This service is the opposite of VDEFINE.

Command Invocation Format
ISPEXEC *This service does not apply to APL2 or

command procedures*

Call Invocation Format
CALL ISPEXEC *This service cannot be used with this interface*

OR

CALL ISPLINK ('VDELETE ', name-list|'* ');

Parameters
name-list

Specifies the dialog variable names that are to be removed from the function
pool, or contains an asterisk.

An asterisk (*) specifies removal from the function pool of all dialog variable
names previously defined by the program module, including exit routine
definitions.

Return Codes
The following return codes are possible:

0 Normal completion.

8 At least one variable not found.

20 Severe error.

Example
Remove ISPF accessibility to a PL/I program variable that was previously
established by VDEFINE to be accessible using dialog variable name MSGNAME.
CALL ISPLINK ('VDELETE ','MSGNAME ');

VERASE – Remove Variables from Shared or Profile Pool
The VERASE service removes variable names and values from the shared pool, the
application profile pool, or both. System variables, variable type ’non-modifiable’,
cannot be removed by using the VERASE service.

Command Invocation Format
ISPEXEC VERASE name-list

[ASIS|SHARED|PROFILE|BOTH]

VDELETE

Chapter 2. Description of ISPF Services 279



Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('VERASE ', name-list
[,'ASIS '|SHARED '|'PROFILE '|'BOTH '] );

Parameters
name-list

Specifies the dialog variable name(s) that are to be removed from the shared
and/or application profile pool.

ASIS
Specifies that the variable(s) are to be removed from the shared pool or, if not
found in the shared pool, they are to be removed from the application profile
pool. ASIS is the default value.

SHARED
Specifies that the variable(s) are to be removed from the shared pool.

PROFILE
Specifies that the variable(s) are to be removed from the application profile
pool.

BOTH
Specifies that the variable(s) are to be removed from both the shared pool and
the application profile pools.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 At least one variable not found.

20 Severe error.

Notes:

1. ISPF processes the entire name list even if it cannot find one or more of the
variable names in the list.

2. With BOTH specified, a 0 return code indicates that ISPF found and removed
the variable from the profile and/or the shared pool. A return code of 8
indicates that ISPF did not find or remove the variable from either the profile
or the shared pool.

3. Be careful not to erase variables that provide functions for you during the ISPF
session. For example, if you erase function key variables (ZPF01-ZPF24) and do
not subsequently respecify them, the keys become inoperative.

VERASE

280 z/OS V1R2.0 ISPF Services Guide



Example
In a CLIST, remove variables NAME, PHONE, and ADDRESS from both the
shared and application profile pools.
ISPEXEC VERASE (NAME PHONE ADDRESS) BOTH

or alternately

Set program variable BUFFER to:
VERASE (NAME PHONE ADDRESS) BOTH

Then set program variable BUFLEN to the length of variable BUFFER and issue:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('VERASE ','(NAME PHONE ADDRESS)','BOTH ');

VGET – Retrieve Variables from a Pool or Profile
The VGET service copies values from dialog variable(s) in the shared pool or the
application profile pool to the function pool variables with the same names. If a
named function variable already exists, it is updated. If not, it is created as an
implicit function variable, and then updated.

Command Invocation Format
ISPEXEC VGET name-list [ASIS|SHARED|PROFILE]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('VGET ', name-list
[,'ASIS '|'SHARED '|'PROFILE '] );

Parameters
name-list

Specifies the names of one or more dialog variables whose values are to be
copied from the shared or profile pool to the function pool. The names are
passed in the standard name-list format.

ASIS
Specifies that the variables are to be copied from the shared pool or, if not
found there, from the profile pool.

SHARED
Specifies that the variables are to be copied from the shared pool.

PROFILE
Specifies that the variables are to be copied from the application profile. A
shared pool variable with the same name is deleted, even if it is not found in
the profile pool.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

VERASE

Chapter 2. Description of ISPF Services 281



buffer
Specifies a buffer containing the name of the service and its parameters in the
same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Variable not found.

12 Validation failed.

16 Translation error or truncation occurred during data movement.

20 Severe error.

Note: If you issue a VGET request for a variable that does not exist in the pool
from which you are trying to copy (shared or profile), the value of the
function pool variable is still updated. Character variables are set to blanks.
Fixed, bit, and hex variables are set to nulls (all zeros).

Example
In a CLIST, copy from the shared pool to the function pool values for variables
whose names are listed in variable VARLIST.
ISPEXEC VGET (&VARLIST) SHARED

In a PL/I program, VARLIST contains a list of variable names. Copy values for
these variables from the shared pool to the function pool. The variable VARLIST
has been made accessible to ISPF by a previous VDEFINE operation. Set the
program variable BUFFER to contain:
VGET (&VARLIST) SHARED

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('VGET ',VARLIST,'SHARED ');

VIEW – View a Data Set
The VIEW service enables you to manipulate data without the risk of saving
changes. As in the EDIT service, data can be manipulated through the use of
familiar line and primary commands.

The VIEW service functions exactly like the EDIT service, with the following
exceptions:
1. You must use the REPLACE or CREATE primary command to save data. The

SAVE primary command is disabled when using the VIEW service.
2. If you are AUTOSAVE mode and enter the END primary command after you

have altered the file being viewed, the View Warning pop-up panel gives you
the option of exiting with no changes saved (by entering the END command
again), or using the CREATE or REPLACE command to save your changes. If

VGET

282 z/OS V1R2.0 ISPF Services Guide



you have made no changes to the data set or member being viewed, the VIEW
service terminates as it would in EDIT mode.

The VIEW service provides an interface to the VIEW function and bypasses the
display of the View Entry Panel. The VIEW interface allows you to use a
customized panel for displaying data (use panel ISREFR01 as a model when
creating your panel), and lets you specify the initial macro and the edit profile to
be used.

You can use VIEW to view any ISPF library, concatenation of ISPF libraries, or data
set that can be allocated by using the LMINIT service. You can use the service
recursively, either through nested dialogs or by entering a VIEW command while
viewing a member or data set. In addition, the EDIT and BROWSE commands can
be nested within a VIEW session until you run out of storage.

The VIEW service cannot be issued by a PL/I main program that also uses
subtasking.

The VIEW service might alter the DISPLAY environment. Do not expect the
DISPLAY environment that existed before invoking the VIEW service to remain
unchanged.

When VIEW is operating in recovery mode, a record of your interactions is
automatically recorded in a PDF-controlled data set. Following a system failure,
you can use the record to recover the data you were viewing.

Note: Dialogs that invoke the VIEW service may invoke the EDREC service first to
start view recovery, because the VIEW service does not do view recovery.

A dialog using VIEW can place data into the ZEDUSER dialog variable in the
shared pool. The data in ZEDUSER is saved in the edit recovery table as an
extension variable when the recovery data set is initialized. This is done if
RECOVERY is ON when first entering view or after using the CREATE or
REPLACE command. The data is then made available in dialog variable ZEDUSER
at the time view recovery is processed.

Note: When you do an EDREC QUERY, ZEDMODE is set to V for View or E for
Edit.

You can now use VIEW to display workstation files on the host and host data sets
on the workstation. The ZWSWFN variable is the workstation working file name
that is generated by ISPF. The variable ZLRECL is the LRECL of the host data set
being edited. Both can be used in the workstation VIEW parameters field. ISPF
interpets any string that starts with an ampersand (&) as a system variable and
evaluates it before passing to the workstation command. Strings that do not start
with an ampersand are passed as is.

Batch commands can also be specified in the Workstation Browse/View fields,
besides the View program name. If you have a file transferred to the workstation
that you wish to do some work on besides View, you can do that in the beginning
of the batch file before invoking the editor. Depending on the parameters passed to
the batch command, you can also have conditional logics to perform other
functions as well.

VIEW

Chapter 2. Description of ISPF Services 283



Command Invocation Format
ISPEXEC VIEW DATASET(dsname) [VOLUME(serial)]

[PASSWORD(pswd-value)]

[PANEL(panel-name)]

[MACRO(macro-name)]

[PROFILE(profile-name)]

[FORMAT(format-name)]

[MIXED(YES|NO)]

[CONFIRM(YES|NO)]

[WS(YES|NO)]

[CHGWARN(YES|NO)]

[PARM(parm-var) ]

OR

ISPEXEC VIEW DATAID(data-id) [MEMBER(member-name)]

[PANEL(panel-name)]

[MACRO(macro-name)]

[PROFILE(profile-name)]

[FORMAT(format-name)]

[MIXED(YES|NO)]

[CONFIRM(YES|NO)]

[WS(YES|NO)]

[CHGWARN(YES|NO)]

[PARM(parm-var)]

OR

ISPEXEC VIEW WSFN(ws-filename) [PANEL(panel-name)]

[MACRO(macro-name)]

[PROFILE(profile-name)]

[FORMAT(format-name)]

[MIXED(YES|NO)]

[CONFIRM(YES|NO)]

[WS(YES|NO)]

[CHGWARN(YES|NO)]

[PARM(parm-var)]

VIEW

284 z/OS V1R2.0 ISPF Services Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



Call Invocation Format
CALL ISPLINK ('VIEW ', {dsname} ,[serial]

,[pswd-value]

,[panel-name]

,[macro-name]

,[profile-name]

,{data-id}

,[member-name]

,[format-name]

,['YES '|'NO ']

,['YES '|'NO ']

,{ws-filename-buffer-name}

,['YES'|'NO']

, ['YES'|'NO']

, [parm-var] );

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
dsname

The data set name, in TSO syntax, of the data set to be viewed. This is
equivalent to the “other” data set name on the View Entry Panel. You can
specify a fully qualified data set name enclosed in apostrophes (' '). If the
apostrophes are omitted, the TSO data set prefix from the user’s TSO profile is
automatically attached to the data set name. The maximum length of this
parameter is 56 characters.

For ISPF libraries and MVS partitioned data sets, you can specify a member
name or a pattern enclosed in parentheses. If you do not specify a member
name or if you specify a member pattern as part of the dsname specification
when the DATASET keyword is used, a member selection list for the ISPF
library, concatenation of libraries, or MVS partitioned data set is displayed. See
the ISPF User’s Guide for more information on patterns and pattern matching.

Note: You can also specify a VSAM data set name. If a VSAM data set is
specified, ISPF checks the ISPF configuration table to see if VSAM
support is enabled. If it is, the specified tool is invoked. If VSAM
support is not enabled, an error message is displayed.

serial
The serial number of the volume on which the data set resides. If you omit this
parameter or code it as blank, the system catalog is searched for the data set
name. The maximum length of this parameter is 6 characters.

VIEW

Chapter 2. Description of ISPF Services 285

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



pswd-value
The password if the data set has MVS password protection. Do not specify a
password for RACF- or PCF-protected data sets.

panel-name
The name of a customized view panel, created by you, to be used when
displaying the data. Refer to ISPF Planning and Customizing for information
about developing a customized panel.

macro-name
The name of the first edit macro to be executed after the data is read, but
before it is displayed. Refer to ISPF Edit and Edit Macros for more information.

profile-name
The name of the edit profile to be used. If you do not specify a profile name,
the profile name defaults to the ISPF library type or last qualifier of the
“other” TSO data set name. See the ISPF User’s Guide for more information.

format-name
The name of the format to be used to reformat the data. The format-name
parameter is provided to support the IBM 5550 terminal using the Double-Byte
Character Set (DBCS).

YES|NO
For the MIXED parameter, if YES is specified, the VIEW service treats the data
as mixed-mode DBCS data. If NO (the default value) is specified, the data is
treated as EBCDIC (single-byte) data. This parameter is provided to support
the IBM 5550 terminal using the Double-Byte Character Set (DBCS).

YES|NO
For the CONFIRM parameter, if you specify YES (the default) and then attempt
to CANCEL, MOVE, or REPLACE data while in VIEW mode, ISPF displays a
pop-up panel that requires you to confirm the action. Because members or data
sets that are cancelled, moved, or replaced are deleted, CONFIRM acts as a
safeguard against accidental data loss. If you want to terminate the view
session without saving the data, press the ENTER key. If you made a mistake
and want to return to the view session, enter the END command. If you
specify NO as the CONFIRM value, you will not be required to confirm a
CANCEL, MOVE, or REPLACE.

YES|NO
For the WS keyword, if you specify YES the VIEW service enables you to view
the host data set or workstation file on the workstation using the workstation
tool configured in the ISPF Tool Configurator. For more information see the
ISPF User’s Guide. If you specify NO as the WS value, the VIEW service views
the host data set or workstation file on the host.

YES|NO
For the CHGWARN keyword, if you specify YES the VIEW service gives a
warning when the first data change is made, indicating that data cannot be
saved in View. If you specify NO, no data change warning is given.

data-id
The data ID that was returned from the LMINIT service. The maximum length
of this parameter is 8 characters.

You can use the LMINIT service in either of two ways before invoking the
VIEW service:

VIEW

286 z/OS V1R2.0 ISPF Services Guide

|
|
|
|



v You can use LMINIT to allocate existing data sets by specifying a data set
name or ISPF library qualifiers. LMINIT returns a data ID as output. This
data ID, rather than a data set name, is then passed as input to the VIEW
service.

v The dialog can allocate its own data sets by using the TSO ALLOCATE
command or MVS dynamic allocation, and then passing the ddname to
LMINIT. Again, a data ID is returned as output from LMINIT and
subsequently passed to the VIEW service. This procedure is called the
ddname interface to VIEW. It is particularly useful for viewing VIO data sets,
which cannot be accessed by data set name because they are not cataloged.

member-name
A member of an ISPF library or MVS partitioned data set, or a pattern. If you
do not specify a member name when the MEMBER keyword or call invocation
is used, or if a pattern is specified, a member selection list for the ISPF library,
concatenation of libraries, or MVS partitioned data set is displayed. Refer to
the ISPF User’s Guide for more information on patterns and pattern matching.

ws-filename-buffer-name
Specifies the name of a variable containing the path and the file name in the
workstation’s file system syntax of the workstation file to be edited. The
maximum length of the path and the workstation file name within this variable
is 256. If the path is omitted, the working directory configured in the ISPF Tool
Configurator will be inserted in front of the workstation file name to resolve
the relative path. For more information see the ISPF User’s Guide.

buf-len
A fullword fixed binary integer containing the length of the buffer parameter.

buffer
A buffer containing the name of the service and its parameters in the same
form as they would appear in an ISPEXEC invocation for a command
invocation.

parm-var
The name of an ISPF variable that contains parameters which are to be passed
to the initial macro specified by macro-name. The variable value must not
exceed 200 bytes in length. If no macro name is specified, parm-var must be
blank or not specified.

Return Codes
The following return codes are possible:

0 Normal completion. Browse was subsituted for VIEW if insufficient storage
was available to read in the requested data.

Note: Data can only be saved through the CREATE or REPLACE primary
commands.

12 VIEW has been disabled through the ISPF configuration table.

14 Member or sequential data set in use.

16 One of the following:
v No members matched the specified pattern
v No members in the partitioned data set.

18 A VSAM data set was specified but the ISPF Configuration Table does not
allow VSAM processing.

20 Severe error; unable to continue.

VIEW

Chapter 2. Description of ISPF Services 287

|
|
|
|
|

||
|



Example 1
This example invokes the EDIT service for TELOUT, a member of the
ISPFPROJ.FTOUTPUT data set.

Command Invocation
ISPEXEC VIEW DATASET('ISPFPROJ.FTOUTPUT(TELOUT)') WS(YES)

OR

ISPEXEC LMINIT DATAID(EDT) DATASET('ISPFPROJ.FTOUTPUT')
ISPEXEC VIEW DATAID(&EDT) MEMBER(TELOUT) WS(YES)

Call Invocation
CALL ISPLINK ('VIEW','ISPFPROJ.FTOUTPUT(TELOUT)',' ',' ',' ',' ',' ',' ',

' ',' ',' ',' ',' ',' ','YES');

OR

Set the program variable BUFFER to contain:
BUFFER = 'VIEW DATASET('ISPFPROJ.FTOUTPUT(TELOUT)'') WS(YES)';

Set the program variable BUFFLN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFFLN, BUFFER);

Example 2
This example invokes the EDIT service for a workstation file, c:\config.sys, using
the PDF editor on the host.

Command Invocation
Set the command variable WSFNNAME to contain:
WSFNNAME='c:\config.sys'

ISPEXEC VIEW WSFN(WSFNNAME) WS(NO)

Call Invocation
Set the program variable to contain:
WSFNNAME='c:\config.sys';

CALL ISPLINK('VIEW',' ',' ',' ',' ',' ',' ',
' ',' ',' ',' ',' ',' ',' WFSNNAME','NO');

OR

Set the program variable WSFNNAME to contain:
WSFNNAME='c:\config.sys';

Set the program variable BUFFER to contain:
BUFFER='VIEW WSFN(WSFNNAME) WS(NO)';

Set the program variable BUFFLEN to the length of the variable BUFFER. Issue the
following:
CAll ISPEXEC(BUFFLEN,BUFFER);

VIEW

288 z/OS V1R2.0 ISPF Services Guide



VIIF – View Interface
The View Interface (VIIF) service provides view functions for data accessed
through dialog-supplied I/O routines. The invoking dialog must perform all
environment-dependent functions such as file allocation, opening, reading, closing,
and freeing. The dialog is also responsible for any Enqueue/Dequeue serialization
that is required. With the dialog providing the I/O routines, VIIF allows you to:
v View data other than partitioned data sets or sequential files such as subsystem

data, and in-storage data.
v Do preprocessing and post-processing of the data being viewed.

The invoking dialog must provide addresses to routines that:
v Read the data sequentially from beginning to end, returning to View one record

on each invocation.
v Perform processing for the MOVE, COPY, and VIEW primary commands. If this

routine is not specified, ISPF processes these commands.

These addresses must be 31-bit addresses, and the routines must have an
addressing mode (AMODE) of 31.

When a View session is operating in recovery mode, a record of your interactions
is automatically recorded in a PDF-controlled data set. Following a system failure,
you can use the record to recover the data you were viewing.

Note: Dialogs that invoke the VIIF service may invoke the EDIREC service first to
start view recovery. The VIIF service itself does not do view recovery.

A dialog using VIIF can place data into the ZEIUSER dialog variable in the shared
pool. When the system initializes the recovery data set, the system also saves the
data in ZEIUSER in the Edit recovery table as an extension variable. This is done if
RECOVERY is ON when first entering View or after you use the CREATE or
REPLACE commands. This data is then made available in dialog variable ZEIUSER
at the time view recovery is processed.

Command Invocation Format
You cannot use command procedures to invoke this service.

Call Invocation Format
The format for invoking VIIF can be different depending on whether you want to
process a pending view recovery. If you do not want to process a pending view
recovery, the format is:
CALL ISPLINK ('VIIF ', [data-name] ,profile-name

,rec-format ,rec-len

,read-routine

,[cmd-routine] ,[dialog-data]

,[edit-len] ,[panel-name]

,[macro-name] ,[format-name]

,['YES '|'NO ']

VIIF

Chapter 2. Description of ISPF Services 289

|
|
|
|
|
|
|
|
|
|
|
|



,['YES '|'NO ']

,[parm-var] );

You must use the VIIF service to recover data viewed in a previous VIIF session.
You must invoke the EDIREC service first to see if a recovery is pending. If you
want to process a pending recovery, use the following format for VIIF, specifying
YES for the recovery-request parameter.
CALL ISPLINK ('VIIF ' ,[data-name] ,' '

,[rec-format] ,[rec-len]

,read-routine

,[cmd-routine] ,[dialog-data]

,' ' ,' ' ,' ' ,' ' ,' '
,'YES ');

Parameters
data-name

This parameter allows you to specify a data name for the source data to be
viewed. This name appears in the title line of the default View panel. It is also
the target data name for an edit recovery table entry when edit recovery is
active. This name must not have any embedded blanks, and its maximum
length is 54 characters. This name is stored in ZDSNT in the function pool.

profile-name
The name of the edit profile to be used. This parameter is required when
recovery-request = NO (or is not specified); otherwise, it is not allowed.

rec-format
The record format: F - fixed, V - variable. This parameter is required when
recovery-request = NO (or is not specified); otherwise, it is optional, but it
must be the same record format that was specified when recovery was initiated
for the data.

rec-len
The record length, in bytes. It must be a positive numeric value between 10
and 32760, inclusive. For variable record format, this is the maximum record
length. This parameter is required when recovery-request = NO (or is not
specified); otherwise, it is optional, but it must be the same record length that
was specified when recovery was initiated for the data.

read-routine
A fullword address indicating the entry point of a dialog-supplied read routine
(required). See “Read Routine” on page 292 for more information about this
parameter.

cmd-routine
A fullword address indicating the entry point of a dialog-supplied routine that
processes the MOVE, COPY, and VIEW primary commands. See “Command
Routine” on page 292 for more information about this parameter. If this
parameter is not specified, ISPF processes these commands.

dialog-data
A fullword address indicating the beginning of a dialog data area. This address

VIIF

290 z/OS V1R2.0 ISPF Services Guide

|
|
|
|



is passed to the dialog-supplied routines. If no address is supplied, zeroes are
passed to the dialog routines. This data area provides a communication area
for the dialog.

edit-len
The length, in bytes, of the data to be displayed for viewing. This parameter
indicates that the data records should be considered to have a length shorter
than rec-len during viewing. Thus, the dialog may include data in the record
that is not accessible for viewing.

Edit-len must be a numeric value between 10 and 32760, inclusive, and must
be less than or equal to parameter rec-len. Rec-len is the default. If the edit-len
parameter is specified, the data that is not displayed are the bytes from
(edit-len +1) to rec-len. That means the inaccessible record data is at the end of
the record.

The edit-len parameter is optional when recovery-request = NO (or is not
specified); otherwise, it is not allowed. The edit-len parameter is not allowed
when format-name is specified.

panel-name
The name of the panel to use for displaying the data. This parameter is
optional when recovery-request = NO (or is not specified); otherwise, it is not
allowed. The default is the standard View data display panel. Refer to ISPF
Planning and Customizing for information about developing a customized panel.

macro-name
The name of the initial macro to be executed. This parameter is optional when
recovery-request = NO (or is not specified); otherwise, it is not allowed. The
default is no initial macro. Refer to ISPF Edit and Edit Macros for more
information on macros.

format-name
The name of the format to be used to reformat the data. This parameter is
optional when recovery-request = NO (or is not specified); otherwise, it is not
allowed. The default is no format. This parameter is provided to support the
IBM 5550 terminal using the Double-Byte Character Set (DBCS). This
parameter is not allowed when the edit-len parameter is specified.

YES|NO (mixed-mode)
Specifies whether the data is treated as mixed-mode DBCS data. This
parameter is optional when recovery-request = NO (or is not specified);
otherwise, it is not allowed. If YES is specified, the VIIF service treats the data
as mixed-mode DBCS data. If NO (the default) is specified, the data is treated
as EBCDIC (single-byte) data. This parameter is provided to support the IBM
5550 terminal using the Double-Byte Character Set (DBCS).

YES|NO (recovery-request)
Specifies whether to process a pending view recovery that was being viewed
with the VIIF service when a system failure occurred. If YES is specified, the
edit recovery should proceed. This function is similar to the EDREC service
with the PROCESS option. If YES is specified to process the view recovery, you
must specify the read routine and write routine, but you must not specify
profile name, edit-len, panel-name, macro-name, format-name and
mixed-mode. If NO (the default) is specified, no edit recovery is processed;
VIIF views the specified data.

parm-var
The name of an ISPF variable that contains parameters which are to be passed

VIIF

Chapter 2. Description of ISPF Services 291

|
|



to the initial macro specified by macro-name. The variable value must not
exceed 200 bytes in length. If no macro name is specified, parm-var must be
blank or not specified.

Dialog-Supplied Routines
All dialog-supplied routines are invoked using standard linkage. All addresses
must be 31-bit addresses, and the addressing mode (AMODE) of the routines must
be AMODE=31.

A VIIF read routine must have an assembler interface to be used in a call to VIIF.

Note: The dialog-supplied routines can not be written in LE member languages
(languages which require the LE runtime environment). Exits that require
the existence of an LE environment are not supported.

Read Routine
VIIF calls the read routine repeatedly to obtain all of the data records to be viewed
at the beginning of the View session. This routine is also called to obtain data
records for the MOVE and COPY commands when the dialog is handling the
processing for these commands. The dialog-supplied read routine is invoked with
the following parameters:
v Fullword pointer to record data read (output from read routine)
v Fullword fixed binary data length of record read if rec-format is ‘V’
v Fullword fixed binary request code. Request settings are as follows:

0 Read next record
1 First read request

v Fullword dialog data area address.

Command Routine
The dialog-supplied command routine, when specified, processes the MOVE,
COPY, and VIEW primary commands. The command routine is invoked with the
following parameters:
v Fullword fixed binary function code word. Decimal values of function settings

are as follows:

1n Move
2n Copy
5n Recursive view

where n is 0 (beginning of function), 1 (successful completion), or 2
(unsuccessful completion). This n value will always be 0 for a recursive View
function; that is, the View request code will be 50.

v Fullword dialog data area address.

To access parameters that can follow the command, the command routine must
access the ZCMD dialog variable from the SHARED variable pool.

For a MOVE or COPY the command routine initiates the processing for the
requested function. When the return code from the command routine is zero, VIIF
calls the read routine to transfer the data. After the read is completed, the
command routine is called once more to handle any termination processing that

VIIF

292 z/OS V1R2.0 ISPF Services Guide

|
|
|

|
|
|



may be required for the requested function. For example, the MOVE function
would need to delete the data that was moved.

For the VIEW command, the command routine must perform all processing
required to effect the desired results for the purposes of the dialog. For example,
the dialog can consider the VIEW command to be an invalid command. The
command routine is called only once for each VIEW command.

Return Codes
When a dialog routine terminates with a return code (12 or higher or an
unexpected return code), the dialog can issue a SETMSG to generate a message on
the next panel display. If the dialog does not set a message, the VIIF service will
issue a default message.

Read Routine
0 Normal completion.

8 End of data records (no data record returned).

16 Read error. If a read error is encountered when the system builds the initial
view display, the VIIF service terminates with a return code of 20.
Otherwise, the view data is redisplayed.

20 Severe error. (The VIIF service terminates immediately with a return code
of 20.)

Command Routine Return Codes
0 Normal completion.

4 ISPF should process the requested function.

12 Command deferred; retain the command on the Command line. View data
is redisplayed.

20 Severe error. (The VIIF service terminates immediately with a return code
of 20.)

VIIF Service Return Codes
0 Normal completion, data not saved.

12 View has been disabled through the configuration table.

16 Unexpected return code received from a dialog-supplied routine. When an
unexpected return code is received, the VIIF service terminates
immediately with a return code of 16.

20 Severe error; unable to continue.

After the View session has been terminated, control is returned to the invoking
dialog with a return code indicating the completion status.

Example
This example invokes the VIIF service to view data called EDIFDSN, which has a
fixed-record format with a record length of 80 characters. An edit profile
(EDIFPROF), read routine (RDRTN) and command routine (CMDRTN) are
supplied, as is a dialog data area (MYDATA).

VIIF

Chapter 2. Description of ISPF Services 293



Call Invocation
CALL ISPLINK ('VIIF ','EDIFDSN ','EDIFPROF ','F ',80,

RDRTN,CMDRTN,MYDATA);

For a more complete example of using VIIF, including dialog-supplied I/O
routines and source code, see the ISPF Dialog Developer’s Guide and Reference

VMASK – Mask and Edit Processing
The VMASK service associates an edit mask with a dialog variable defined with
VDEFINE. The edit mask is a pattern used to validate input into that variable. The
mask characters are stripped from the data before it is put into the function pool,
or before the data is stored in a table from a TBDISPL. When the masked variable
is displayed on a panel, stored in the shared or profile pool, or accessed by
VCOPY, the output string contains the mask characters. When specifying the
length to receive these variables on the VCOPY call, the length should be as long
as the mask, not the defined variable. The length of the mask should also be
considered when defining the field in which a masked variable is displayed.

The mask is only associated with the definition of the variable that was active
when the VMASK was issued and cannot be used with implicit variables.

For example:
VDEFINE VAR1 123 A
VMASK VAR1 (999) A
VDEFINE VAR1 123 B
VCOPY VAR1 123 B
VDELETE VAR1 B
VCOPY VAR1 (123) A

The mask is associated with the A definition of VAR1, not the B definition.

When using a masked variable on a panel, you must issue a VEDIT in the
processing section of the panel for that masked variable for the data to be
accessible in the function pool. You must issue the VEDIT statement before any
other panel statements that reference variables, (such as VPUT or VER). If you
don’t, the values in the pool will be unpredictable. The VEDIT statement indicates
to ISPF that the data entered into the masked variable field should be verified and
the mask stripped out. If you don’t issue the VEDIT for each masked variable on
the panel, the resulting data in the pool will be unpredictable.

The VMASK service is supported for programming languages. The variable must
be VDEFINEd with FIXED, PACK, or CHAR formats.

VMASK Call Invocation
CALL ISPLINK ('VMASK ',name-list{,'FORMAT '{,'IDATE '} }

{ {,'STDDATE '} }
{ {,'ITIME '} }
{ {,'STDTIME '} }
{ {,'JDATE '} }
{ {,'JSTD '}) }
{,'USER ','mask',masklen)}

VIIF

294 z/OS V1R2.0 ISPF Services Guide



Parameters
name-list

Specifies the names of one or more dialog variables whose values are to be
associated with a mask pattern.

FORMAT|USER
Identifies the type of mask to be associated with the dialog variable. FORMAT
indicates that the mask is one of the predefined mask formats. USER indicates
the mask will be user defined.

If FORMAT is specified, the following keywords are predefined mask patterns
that ISPF validates.

IDATE This specifies a data type for which the format represents a
date expressed in a 2-digit year (YY), month (MM), and day
(DD).

The IDATE internal format used by the dialog variable
contains 6 digits representing YYMMDD. The IDATE display
format contains 8 characters, including the national language
date delimiter character. For the U.S., the format is
YY/MM/DD. For input only, ISPF ensures the resulting IDATE
internal format value is a valid date. It ensures that the internal
value for YY is 00–99, for MM is 01–12 and for DD is 01–31.
Validation is also done to check the date for months with fewer
than 31 days and for leap years.

STDDATE This specifies a data type for which the format represents a
date expressed in a 4-digit year (YYYY), month (MM) and day
(DD).

The STDDATE internal format used by the dialog variable
contains 8 digits representing YYYYMMDD. The STDDATE
display format contains 10 characters including the national
language date delimiter. For the U.S., the format is
YYYY/MM/DD. For input only, ISPF ensures the resulting
STDDATE internal value is a valid date. It ensures that the
internal value for YYYY is 0000–9999, for MM is 01–12 and for
DD is 01–31. Validation is also done to check the date for
months with fewer than 31 days and for leap years.

ITIME This specifies a data type for which the format represents time
expressed in hours (HH) and minutes (MM).

The ITIME internal format used by the dialog variable contains
4 digits representing HHMM. The ITIME display format
contains 5 characters including the national language time
delimiter. For the U.S., the format is HH:MM. Hours are
specified using the 24-hour clock. For input only, ISPF ensures
the resulting ITIME internal value is a valid time. It ensures
that the internal value for HH is 00–23 and for MM is 00–59.

STDTIME This specifies a data type for which the format represents time
expressed in hours (HH), minutes (MM) and seconds (SS).

The STDTIME internal format used by the dialog variable
contains 6 digits representing HHMMSS. The STDTIME display
format contains 8 characters including the national language
time delimiter. For the U.S., the format is HH:MM:SS. Hours
are specified using the 24-hour clock. For input only, ISPF

VMASK

Chapter 2. Description of ISPF Services 295



ensures the resulting STDTIME internal value is a valid time. It
ensures that the internal value for HH is 00–23, for MM is
00–59 and for SS is 00–59.

JDATE This specifies a data type for which the format represents a
date expressed in a 2-digit year (YY) and day of the year
(DDD).

The JDATE internal format used by the dialog variable
contains 5 digits representing YYDDD. The JDATE display
format contains 6 characters in the format YY.DDD. For input
only, ISPF ensures the resulting JDATE internal value is a valid
date. It ensures that the internal value for YY is 00–99 and for
DDD is 365. Validation is also done to check for leap years
with 366 days.

JSTD This specifies a data type for which the format represents a
date expressed in a 4-digit year (YYYY) and day of the year
(DDD).

The JSTD internal format used by the dialog variable contains
7 digits representing YYYYDDD. The JSTD display format
contains 8 characters in the format is YYYY.DDD. For input
only, ISPF ensures the resulting JSTD internal value is a valid
date. It ensures that the internal value for YYYY is 0000–9999
and for DDD is 365. Validation is also done to check for leap
years.

When a user enters a value for a variable with a type of either IDATE or
STDDATE, it must be entered using the national language date format. It is a
good idea to display an explanation of the expected format to the user so that
the value is entered properly. ISPF verifies that the value entered is a valid
date, and if no errors are found, the national language date format is converted
to the internal format before the value is stored in the variable pool.

If USER is specified, the following parameters must be defined:

mask Identifies the mask pattern associated with the dialog variable.

A mask pattern can consist of 20 characters. The following are the
valid mask symbols:

A Any alphabetic character (A–Z, a–z)

B A blank space

9 Any numeric character (0–9)

H Any hexadecimal digit (0–9, A–F, a–f)

N Any numeric or alphabetic character
(0–9, A–Z, a–z)

V Location of the assumed decimal point

S The numeric data is signed

X Any allowable characters from the
character set of the computer

Special characters ( ) - / , .

VMASK

296 z/OS V1R2.0 ISPF Services Guide



The data represented by the B, V and special character symbols will be
stripped before the data is put into the pool. The specified mask must
contain at least one of the symbols A, 9, H, N, or X.

The S symbol must be in the first position to be accepted.

masklen Specifies the length of the mask in bytes. The
maximum length of the mask is 20. This parameter
must be specified in a fullword fixed binary integer.

Return Codes
The following return codes are possible:

0 Normal completion

8 Variable not found

20 Severe error.

Example
In this example, a character variable (CVAR) is defined with a user-defined mask
for a phone number. A fixed variable (FVAR) with a time format is specified.
DECLARE

FVAR FIXED BIN(31),
CVAR CHAR(10),
LENCHR FIXED BIN(31),
LENFIX FIXED BIN(31),
LENMSK FIXED BIN(31);

LENCHR = 10;
LENFIX = 4;
CALL ISPLINK('VDEFINE ','(CVAR )',CVAR,'CHAR ',LENCHR);
CALL ISPLINK('VDEFINE ','(FVAR )',FVAR,'FIXED ',LENFIX);
LENMSK = 13;
CALL ISPLINK('VMASK ','(CVAR )','USER ','(999)999-9999',LENMSK);
CALL ISPLINK('VMASK ','(FVAR )','FORMAT ','ITIME ');

The VEDIT Statement
Use the VEDIT statement to verify mask data.

VPUT – Update Variables in the Shared or Profile Pool
The VPUT service copies values from dialog variables in the function pool to the
shared or application profile pool. If a variable of the same name already exists in
the shared or the profile pool, it is updated. If it does not exist in the shared or
profile pool, it is created in the pool specified by the parameter on the VPUT
service request, and then it is updated.

Command Invocation Format
ISPEXEC VPUT name-list [ASIS|SHARED|PROFILE]

Call Invocation Format
CALL ISPEXEC (buf-len, buffer);

OR

CALL ISPLINK ('VPUT ', name-list
[,'ASIS '|'SHARED '|'PROFILE '] );

VMASK

Chapter 2. Description of ISPF Services 297



Parameters
name-list

Specifies the names of one or more dialog variables whose values are to be
copied from the function pool to the shared or profile pool. See “Invoking
the ISPF Services” on page 2 for specification of name lists.

ASIS Specifies that the variables are to be copied to the pool in which they
already exist or that they are to be copied to the shared pool, if they are
new. If the variables exist in both the shared and profile pools, they are
copied to the shared pool only.

SHARED
Specifies that the variables are to be copied to the shared pool.

PROFILE
Specifies that the variables are to be copied to the application profile pool.
Any shared pool variables of the same names are deleted.

buf-len
Specifies a fullword fixed binary integer containing the length of “buffer.”

buffer Specifies a buffer containing the name of the service and its parameters in
the same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion.

8 Variable not found.

16 Truncation occurred while copying variables to the application profile pool.

20 Severe error.

Example
In a CLIST, write variables, the names of which are listed in the variable
VPUTLIST, from the function pool to the shared pool.
ISPEXEC VPUT (&VPUTLIST ) SHARED

In a PL/I program, write variables, the names of which are listed in program
variable VPUTLIST, from the function pool to the shared pool. The variable
VPUTLIST has been made available to ISPF by a previous VDEFINE operation. Set
the program variable BUFFER to contain:
VPUT (&VPUTLIST ) SHARED

Set program variable BUFLEN to the length of the variable BUFFER. Issue the
following:
CALL ISPEXEC (BUFLEN, BUFFER);

or alternately
CALL ISPLINK ('VPUT ',VPUTLIST,'SHARED ');

VPUT

298 z/OS V1R2.0 ISPF Services Guide



VREPLACE – Replace a Variable
The VREPLACE service is used only with CALL ISPLINK or CALL ISPLNK calls.

The VREPLACE service allows a program module to update the contents of a
variable in the function pool.

The variable names can be specified as single 8-character values, a list enclosed in
parentheses, or a name-list structure. An array of lengths must be supplied on
input to map the area that contains the data for each of the variables.

The variable to be updated can be the function’s own defined variable, if it exists,
or an implicit variable associated with the function. If the named variable does not
exist, it is created as an implicit function variable.

Command Invocation Format
ISPEXEC *This service does not apply to

APL2 or command procedures*

Call Invocation Format
CALL ISPEXEC *This service cannot be used with this interface*

OR

CALL ISPLINK ('VREPLACE', name-list, lengths, values);

Parameters
name-list

Specifies the names of the dialog variables whose values are to be updated.
The standard name-list format is used.

lengths
Specifies an array of values giving, for each corresponding variable in the
name-list, the number of bytes of the data to be used in the updating. Each
field in the array must be a fullword binary integer.

values Specifies, in the buffer mapped by the length array, the update data to be
used in the updating.

Return Codes
The following return codes are possible:

0 Normal completion.

16 Truncation has occurred during data movement.

20 Severe error.

Example
Copy the value of a field named QROWSD from this PL/I program module to the
function variable named QROWS. Before the copy operation, if no variable with
this name is found in the function pool, create one, giving it the name QROWS.
Program variable L8 contains a value of 8.
CALL ISPLINK ('VREPLACE','QROWS ',L8,QROWSD);

VREPLACE

Chapter 2. Description of ISPF Services 299



VRESET – Reset Function Variables
The VRESET service is used only with CALL ISPLINK or CALL ISPLNK calls.

The VRESET service allows a program to remove its function pool variables as
though VDELETEs had been done. Any implicit variables are also deleted.

Command Invocation Format
ISPEXEC *This service does not apply to

APL or command procedures*

Call Invocation Format
CALL ISPEXEC *This service cannot be used with this interface*

OR

CALL ISPLINK ('VRESET ');

Return Codes
The following return codes are possible:

0 Normal completion.

20 Severe error.

Example
Remove ISPF accessibility to all PL/I program variables.
CALL ISPLINK ('VRESET ');

WSCON — Connect to a Workstation
The WSCON service enables you to connect to the workstation without using the
GUI parameter on the ISPSTART command and the Initiate Workstation Connection
panel from the ISPF settings.

You can issue the WSCON service from a program, clist, or REXX exec to connect
to the workstation.

Command Invocation Format
ISPEXEC WSCON [IP(ip_var_name)]

[LU(lu_var_name)]
[FI ]
[TITLE(title_var_name)]
[FRAME(STD | FIX | DLG)]
[BKGRND(STD | DLG)]
[CODEPAGE(codepage)]
[CHARSET(character_SET)]
[NOGUIDSP]
[PANEL(YES | NO | ONERROR)]

Call Invocation Format
CALL ISPLINK ('WSCON '

[,ip_var_name]
[,lu_var_name]
[,FI]

VRESET

300 z/OS V1R2.0 ISPF Services Guide



[,title_var_name]
[,STD | FIX | DLG]
[,STD | DLG]
[,codepage]
[,character_set]
[,NOGUIDSP]
[,YES | NO | ONERROR]);

OR

CALL ISPEXEC (buf-len, buffer);

Parameters
IP(ip_var_name)

The name of the dialog variable containing the workstation’s TCP/IP address
or host name. The value can be a maximum of 64 characters.

LU(lu_var_name)
The name of the dialog variable containing the workstation’s APPC address or
host name. The value can be a maximum of 64 characters.

FI This parameter specifies that you want ISPF to search the file allocated to
ISPDTPRF DD for your network address.

TITLE(title_var_name)
The name of the dialog variable containing the title for the ISPF GUI panels if
ZWINTTL or ZAPPTTL in not defined by the dialog. The value can be a
maximum of 64 characters.

FRAME(STD | FIX | DLG)
This parameter specifies that the first window frame displayed in GUI mode
be standard (STD), fixed (FIX), or dialog (DLG). If this parameter is not
specified, the value from the user’s system profile is used. If no value is saved
in the system profile, STD is the default.

BKGRND(STD | DLG)
This parameter specifies that the first window displayed in GUI mode have
standard (STD) or dialog (DLG) background color. The colors are defined by
the workstation. If this parameter is not specified, the value from the user’s
system profile is used. If no value is saved in the system profile, DLG is the
default.

CODEPAGE(codepage)

This numeric value is used as the host codepage in translating data from the
host to the workstation, regardless of the values returned from the terminal
query.

If CODEPAGE is specified, CHARSET must also be specified. If these values
are not specified on the WSCON service, then values previously specified on
the Initiate Workstation Connection panel and saved in the user’s system profile
are used. If there are no codepage and character set values saved in the system
profile, then values from the terminal query are used. If your terminal or
emulator does not support codepages, the CODEPAGE and CHARSET
parameter values on ISPSTART are used. If ISPSTART does not have the
parameters specified, English is the default.

CHARSET(character_set)

WSCON

Chapter 2. Description of ISPF Services 301



This numeric value is used as the host character set in translating data from
the host to the workstation, regardless of the values returned from the terminal
query.

If CHARSET is specified, CODEPAGE must also be specified. If these values
are not specified on the WSCON service, then values previously specified on
the Initiate Workstation Connection panel and saved in the user’s system profile
are used. If there are no codepage and character set values saved in the system
profile, then values from the terminal query are used. If your terminal or
emulator does not support codepages, the CODEPAGE and CHARSET
parameter values on ISPSTART are used. If ISPSTART does not have the
parameters specified, English is the default.

NOGUIDSP
This parameter specifies that you want to make a connection to the
workstation, but do not want ISPF to display in GUI mode. If this parameter is
not specified, ISPF displays in GUI mode.

PANEL(YES | NO | ONERROR)

This parameter specifies whether or not you want the Initiate Workstation
Connection panel to be displayed.

If YES is specified, the Initiate Workstation Connection panel fields are initialized
with the values of IP, LU, and TITLE that you have specified, even if the
specified dialog variable value is blank.

If NO is specified, appropriate return codes are issued if there are errors with
the specified parameters. Parameter values are not saved in the user’s system
profile. NO is the default.

ONERROR specifies that the panel is to be displayed only if there is an error
with the specified parameters. Any parameter that is not valid causes the panel
to display with the non-valid values in the appropriate fields.

buf-len
This specifies a fullword fixed binary integer containing the length of ″buffer″.

buffer
This specifies a buffer containing the name of the service and its parameters in
the same form as they would appear in an ISPEXEC call for a command
procedure.

Return Codes
The following return codes are possible:

0 Normal completion. Connection established.

8 The user hit End, Exit, or Cancel from the Initiate Workstation Connection
panel without making a connection.

12 Already in GUI mode. Recursive error.

14 Connecting in GUI mode is not supported when in partition mode or split
screen.

16 Cannot connect to workstation.

20 Parameters not valid or syntax conflict. For example, both IP and LU
specified.

WSCON

302 z/OS V1R2.0 ISPF Services Guide



Example
This example defines the workstation address and title variables, and invokes the
WSCON service to initiate a GUI display.
DECLARE

GUI_TITLE CHAR(64),
IP_ADDRESS CHAR(64),
BLANKS CHAR(8);

IP_ADDRESS = '32.225.17.228';
CALL ISPLINK('VDEFINE ','MYADDR ',IP_ADDRESS,'CHAR',64);

GUI_TITLE = 'THIS IS MY TITLE FOR MY GUI SESSION';
CALL ISPLINK('VDEFINE ','MYTITLE ',GUI_TITLE,'CHAR',64);

CALL ISPLINK('WSCON ',
'MYADDR', /* IP */
BLANKS, /* LU */
BLANKS, /* FI */
'MYTITLE', /* TITLE */
'FIX', /* FRAME */
'STD', /* BACKGROUND COLOR */
37, /* CODEPAGE */
697, /* CHARACTER SET */
BLANKS, /* NOGUIDSP */
'ONERROR'); /* PANEL */

Restrictions
When connecting to the workstation in GUI mode, the first panel displayed in GUI
mode might not contain group boxes and images that are defined on the panel.
Other constructs defined within the panel based on the ZGUI variable might not
display properly. After the user presses the Enter key, causing the panel to be
reprocessed, then these constructs will be visible in GUI mode.

WSDISCON — Disconnect from a Workstation
The WSDISCON service enables you to disconnect from the workstation without
having to terminate your ISPF session.

You can issue the WSDISCON service from a program, clist, or REXX exec to
disconnect from the workstation.

Command Invocation Format
ISPEXEC WSDISCON

Call Invocation Format
CALL ISPLINK ('WSDISCON');
OR

CALL ISPEXEC (buf-len, buffer);

Parameters
buf-len

This specifies a fullword fixed binary integer containing the length of ″buffer″.

WSCON

Chapter 2. Description of ISPF Services 303



buffer
This specifies a buffer containing the name of the service.

Return Codes
The following return codes are possible:

0 Normal completion. User disconnected from workstation.

8 User trying to disconnect from workstation, but there is no current
connection.

10 User trying to disconnect from GUI mode, but he is connected with
GUISCRD or GUISCRW values that are different than the host emulator
session. User is not disconnected.

12 User trying to disconnect from a GUI display when running BATCH GUI
mode. User is not disconnected.

14 User trying to disconnect from workstation while running the Workstation
Tool Integration Configuration Program. User is not disconnected.

Usage Notes
1. If the CODEPAGE and CHARSET parameters were specified on the WSCON

service, the Initiate Workstation Connection panel, or the ISPSTART GUI
statement when a connection was made to the workstation, their values might
no longer be the host codepage and character set in 3270 mode following a
WSDISCON service invocation. The values returned from the terminal query
are restored as the active codepage and character set. If your terminal or
emulator does not support codepages, the CODEPAGE and CHARSET
parameter values originally specified on your ISPSTART statement are used. If
these parameters were not specified on ISPSTART, English is the default.

2. If you are running with TSO line mode support while displaying ISPF in GUI
mode, the ISPF/TSO window continues to display TSO line mode after the
WSDISCON service is issued. The ISPF/TSO window is not removed until
your ISPF session is terminated.

Restrictions
v When disconnecting from GUI mode, the name of any group boxes defined on

the panel that WSDISCON was issued from will display on the screen in 3270
mode. After the user presses the Enter key, causing the panel to reprocess, then
these group box names disappear and any panel text under the names
reappears.

v If the user is in GUI mode and in split screen mode when the WSDISCON
service is invoked, he is disconnected from the workstation, and the screen from
which the WSDISCON service was invoked is displayed in the full 3270
emulator session without a split line. The setting of the user’s Always show
split line parameter has no effect on this. The other ISPF sessions are hidden
and available for display after the SWAP command is entered. Additional split
requests cause the split line to redisplay, provided that the Always show split
line setting is selected.

v If pop-up windows are displayed in GUI mode when the WSDISCON service is
invoked, the pop-up windows are suspended on the 3270 session. The panels are
displayed as full-screen panels. If new addpops are then invoked, the new
panels display as pop-ups.

v The user cannot issue WSDISCON when running in Batch GUI mode.

WSDISCON

304 z/OS V1R2.0 ISPF Services Guide



v The user cannot issue WSDISCON when connected to the ISPF Application
Server.

WSDISCON

Chapter 2. Description of ISPF Services 305



WSDISCON

306 z/OS V1R2.0 ISPF Services Guide



Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non_IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504–1785, USA.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries in writing to

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1980, 2001 307



Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact the IBM Corporation,
Department TL3B, 3039 Cornwallis Road, Research Triangle Park, North Carolina,
27709–2195, USA. Such information may be available, subject to appropriate terms
and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non_IBM products should be addressed to the
suppliers of those products.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming Interface Information
This book primarily documents information that is NOT intended to be used as
Programming Interfaces of ISPF.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

APL2
BookManager
C++
Common User Access
CUA
DFSMSdfp
DFSMSdss
DFSMShsm
DFSMSrmm
DFSMS/MVS
DFSORT
ESCON
FFST
GDDM

IBM
Language Environment
MVS
MVS/ESA
OS/2
OS/390
OS/390 Security Server
RACF
Resource Access Control Facility
SOMobjects
System View
VisualLift
VTAM

Microsoft and Windows are registered trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

308 z/OS V1R2.0 ISPF Services Guide



Other company, product, and service names may be trademarks or service marks
of others.

Notices 309



310 z/OS V1R2.0 ISPF Services Guide



Index

Special Characters
& (ampersand)

in a variable name 4
symbolic variables 7

% sign
beginning a command with 32, 187

A
abbreviated (generic) search

argument 251
abend 35
accessing skeleton files (FTOPEN) 73
adding a member to a data set or

library 127
adding a row to a table (TBADD) 196
ADDPOP parameter 187
ADDPOP service

description 15, 21
example 22
relation to control service 32
return codes 22

APL2
cannot use ISPLINK call 5
character-vector 9
example 10
general call format 9
interface with ISPF 9
lastrc variable 13

application commands, definition 232
assembler

example 12
general call format 11

Assembler language, VL keyword 8
attention exits (CLIST) 4
ATTN statement 4
audit trail

in EDIF recovery mode 47, 289
in EDIT recovery mode 55
in VIEW recovery mode 283

automatic and non-automatic entry into
line mode 32, 187

AUTOSEL (auto-selection)
call parameters description 211
command procedure description 211

AUTOSEL control variable, use with
TBDISPL 216

B
BARRIER keyword 187
BKGRND 301
BRIF service, description 23
Browse Interface service 23
BROWSE service

description 17, 28
recursive use 28

buf-len 302, 303
buffer 302, 304

C
C

example 11
general call format 11

call
general format 5, 8
positional parameters 5

call interfaces
ISPEXEC 3, 7
ISPLINK 5

call invocation
basic interfaces 5
general call format

APL2 9
COBOL 5, 10
FORTRAN 8
ISPLINK 13
Pascal 8, 9
PL/I 5, 10

parameters
as symbolic variables 7
omitting 5
positional 5, 8
types of 6

CALL ISPEXEC interface 7
CALL ISPLINK interface 5
CANCEL mode, effect on error

processing 14
change row in table

TBMOD 237
TBPUT 241

character_set 301
character-vector 9
clear table variables to nulls

(TBVCLEAR) 265
CLIST

attention exits 4
variables, used in command

invocation 4
close and save table (TBCLOSE) 201
close table without saving (TBEND) 232
closing a data set 99
COBOL

call format using ISPEXEC 7
example 5, 10
general call format 5
high-order bit generation 6
literals

in assignment statements 11
in call statements, not allowed 11

RETURN-CODE built-in variable 13
return codes from services 13, 14, 15

codepage 301
coding requests for services

keyword parameter 6
numeric value parameter 6
service name parameter 6

column of a table, defining 17
command call

general format 3
positional parameters 4

command invocation
CLIST variables 3
dialog variables as parameters 5
general format 3
ISPEXEC command 3
Option 7.6, Dialog Services 3
parameter conventions 4
return codes 13
variables 4

command routines and I/O, return codes
from 15

commands, definition of application 232
compressing a data set 100
COND keyword on SETMSG 15
CONTROL service

ADDPOP/REMPOP service
relation 32

description 19, 31
example 37

copying
a variable (VCOPY) 267
members of a data set 102
variables to a shared pool or profile

pool (VPUT) 297
create a new table (TBCREATE) 203
creating a member list 131, 148
CRP, movement of

TBBOTTOM 199
TBDISPL 209
TBSCAN 251
TBSKIP 255
TBTOP 264

CSRROW (.CSRROW) control
variable 216

D
data id

definition of 121
generating 121

Data Set Display Service 105
Data Set Information Dialog Service,

DSINFO 44
Data Set Information Panel, data set list

dialog 105
DBCS

defining search argument 251
sort sequence 258

DBCS considerations
LMGET 120
LMPUT 168

ddname interface 30, 59, 287
define function variable (VDEFINE) 269
delete, a table (TBERASE) 233
delete (set to nulls) table values

(TBVCLEAR) 265
Delete option of LMMDISP 141
delete row from table (TBDELETE) 206
dialog

example 223
service description 2, 21

© Copyright IBM Corp. 1980, 2001 311



dialog function, example 223
DISPLAY service

description 15, 38
example 42

display services 15
distributed edit 55
DSINFO 44

E
EDIF service

desciption of 46
recovery mode 47, 289

EDIREC service, description of 53
edit, distributed 55
Edit interface service 46
edit macros, ISPF/PDF services in 1
Edit profile 190
edit recovery table

initialization of 53, 62
scanning for pending recovery 53, 62

EDIT service
description 17, 55
recovery mode 55
recursive use 55

EDREC service
CANCEL option 64
DEFER option 64
description 17, 61
INIT option 62
PROCESS option 64
QUERY option 62

ending, file tailoring (FTCLOSE) 69
ENQ, Return (QUERYENQ) 107
ENQ issued by TBOPEN 239
erase (set to nulls) table variables

(TBVCLEAR) 265
erase a table (TBERASE) 233
erasing

member of file tailoring output library
(FTERASE) 71

variables from shared or profile pool
(VDELETE) 279

erasing a data set 115
error modes (return code of 12 or higher)

CANCEL 14
RETURN 14

exit routine, VDEFINE service 275
exits, CLIST attention 4

F
FI 301
file tailoring services 15
FILESTAT 65
FILESTAT service 19
FILEXFER service 19, 66
find table variable TBSARG 245
finding a library member 144
FORTRAN

example 8
general call format 5, 8
high-order bit generation 6
ISPEX alternate name 5
ISPLNK alternate name 5
lastrc variable 8

FORTRAN (continued)
passing arguments 8
return code variable 13
return codes from services 13, 15
variable names 4, 5

FRAME 301
freeing a data set from association with a

data ID 118
FTCLOSE service

description 69
example 69, 71

FTERASE service
description 71
example 72

FTINCL service
description 72
example 73

FTOPEN service
description 73
example 74

function commands, definition 232
function variable pool, LMMDISP,

variable saved 132
function variables, define in function pool

(VDEFINE) 269

G
generic search argument, specification of

TBSARG 245
TBSCAN 251

get a copy of variable (VCOPY) 267
get row from table (TBGET) 236
get variable from shared pool or profile

pool (VGET) 281
GETMSG service

description 19, 75
example 76

graphics interface mode, for 3290
terminal 78

GRERROR service 77
GRINIT service

description 77
example 79

GRTERM service 79

I
I/O and command routines, return codes

from 15
including file tailoring skeleton

(FTINCL) 72
initializing edit recovery 53
invoking

dialog management services 2
services 21

invoking a dialog (SELECT) 185
ip_var_name 301
ISPEX, alternate call interface name for

FORTRAN and Pascal 5
ISPEX, call interface 5, 8
ISPEXEC

call interface 3, 5, 7
command invocation 4, 7
using DM services 2

ISPF, ISPQRY, testing if active 2

ISPF library, defined 17
ISPF/PDF services

BROWSE 17
command invocation 3
description of 17
EDIF service 17
EDIT 17
EDREC 17
introduction to 1
invoking 2
load module search order 2
notation conventions 2
prerequisites 1
with dialog management service 3

ISPFILU ddname 82
ISPLINK

call interface 5, 8
parameters 5, 14

ISPLINK routine, invoking DM
services 3

ISPLNK
alternate call interface name for

FORTRAN 5
alternate call interface name for

Pascal 5
call interface 5
parameters 8

ISPLUSR ddname 82
ISPMUSR ddname 82
ISPPUSR ddname 82
ISPQRY, testing if active 2
ISPSUSR ddname 82
ISPTABU ddname 82
ISPTUSR ddname 82

K
keyword parameter 4
keyword parameter, coding requests for

services 6

L
LANG keyword 187

CREX parameter 187
lastrc variable

APL2 9
FORTRAN 8
Pascal 8

LIBDEF null starement 82, 90
LIBDEF service 19, 80
library

opening 14
renaming 172

library access services 16
line length on LIST service 96
line mode

automatic entry 32, 187
non-automatic entry 32, 187

list data set, writing to 19, 94
LIST service description 19, 94
LMCLOSE 16
LMCLOSE service, description 99
LMCOMP 16
LMCOPY 16
LMCOPY service, description 102

312 z/OS V1R2.0 ISPF Services Guide



LMDDISP 16
LMDDISP service, description 105
LMDFREE 16
LMDFREE service, description 109, 118
LMDINIT 16
LMDINIT service, description 110
LMDLIST 16
LMDLIST service, description 112
LMERASE 16
LMERASE service, description 115
LMFREE 16
LMFREE service, description 118
LMGET service

DBCS considerations 120
description 16, 119

LMINIT
ddname

to BROWSE 30
to EDIT 59
to VIEW 287

description 16, 121
LMMADD 16
LMMADD service

description 127, 131
statistical variables 127, 132
ZLMSEC 128

LMMDEL service 129
LMMDISP 16
LMMFIND 16
LMMFIND service

description 144
statistical variables 146

LMMLIST 16
LMMLIST service

description 148
FREE option 149
LIST option 150
statistical variables 149

LMMOVE 16, 152
LMMOVE service, description 152
LMMREN 16, 155
LMMREN service, description 155
LMMREP 16, 157
LMMREP service

ZLMSEC 158
LMMSTATS 16
LMMSTATS service, description 159
LMOPEN 16
LMOPEN service

description 163
INPUT/OUTPUT options 162

LMPRINT 16
LMPRINT service, description 165
LMPUT 16, 100
LMPUT service

DBCS considerations 166
description 168

LMQUERY 16
LMQUERY service, description 169
LMRENAME 16
LMRENAME service, description 172
LMREP service

description 157
statistical variables 157

LMxxxxxx - library access services 16
LNCT Search-For process statement 16
load module search order 3

LOG service
description 19, 174
example 175

logging a message (LOG service) 19
lu_var_name 301

M
mask association with dialog variables

(VMASK) 294
member

copying 102
deleting 129
erasing 115
finding 144
renaming 155
replacing 157

member list
adding a member 139
creating 148
dialog variables saved 132
displaying 133
freeing storage space associated

with 143, 149
getting the next member 136, 151
putting information in the line

command area and the user data
field 137

Member List Dialog Service,
MEMLIST 175

MEMLIST 175
message library, LIBDEF definition 86
message logging (LOG service) 19
messages, setting (SETMSG) 193
model sets, example 207, 223
modify a table row

TBMOD 237
TBPUT 241

move current row pointer (CRP) 255
TBBOTTOM 255
TBSCAN 255
TBSKIP 255
TBTOP 255, 257

moving data set members 152

N
naming restrictions for dialog

functions 188
National Language Support (NLS), for

numeric representation 259
NEST keyword 188
NEWAPPL

data element search order 87
description of command

procedures 189
NOGUIDSP 302
notation conventions 2
numeric value parameter, coding requests

for services 6

O
open a table (TBOPEN) 239
open and create a table

(TBCREATE) 203

opening a data set 162
opening skeleton files (FTOPEN) 73

P
page eject on list data set 96
PANEL 302
panel definition, used by TBDISPL 15
parameters

coding rules for service requests 4, 6
specified as variables 10
used as symbolic variables 7

partition mode for 3290 terminal 78
Pascal

general call format 8
ISPEX alternate name 5
ISPLINK alternate name 5
lastrc variable 8
passing arguments as variables or

literals 9
return code registers 13
return code variable 13
variable names 4, 5

PASSLIB
data element search order 87
description of command

procedures 190
PDF services, with edit macros 1
percent (%) sign, beginning a command

with 32, 187
PL/I

call format using ISPEXEC 7
call format using ISPLINK 5
example of statements you should

use 10
high-order bit generation 6, 8
PLIRETV build-in function should

use 13
return codes 13
return codes from services 13, 15
using literals in assignment

statements 10
PLIRETV build-in function 13, 15
POSITION, TBDISPL parameter 216
positional parameters, command

invocation 3
PQUERY service, description 19, 177
printing data sets 165
Programming Control Facility (PCF) 29
put variables in shared pool or profile

pool (VPUT) 297

Q
QBASELIB 180
QBASELIB service 19
QLIBDEF service, description 181
Query Base Library Information,

QBASELIB 180
QUERYENQ 107

R
RACF (Resource Access Control

Facility) 29

Index 313



read a table into virtual storage
(TBOPEN) 239

reading a data set record 119
reading row from table

TBBOTTOM 199
TBGET 236
TBSCAN 251

reinitialization section of panel definition,
panel processing considerations 40

remove definition of variables from
function pool

VDELETE 279
VRESET 300

REMPOP service
description 19, 184
relation to control service 32
return codes 185

renaming a member 155
renaming an ISPF library 172
replace a data set member 157
replace variable in function pool

(VREPLACE) 299
reset table variables to nulls

(TBVCLEAR) 265
reset variables 300
restrictions on member expansion and

member part lists
I/O and command routines (return

codes) 13
service (return codes) 15

retrieve variables from shared pool or
profile (VGET) 281

retrieving a row from table
TBBOTTOM 199
TBDISPL 209
TBGET 236
TBSCAN 251
TBSKIP 255

RETURN-CODE
COBOL built-in variable 13
system variables to format error

messages 15
return codes

from services 13
I/O and command routines 15

Return ENQs 107
RETURN mode, effect on error

processing 14
row, determine existence (TBEXIST) 234
row deletion (TBDELETE) 206
row table services 18
ROWID, TBDISPL parameter 216
rows of a table, content 17

S
save and close table (TBCLOSE) 201
save table (TBSAVE) 249
search, a table (TBSCAN) 251
search argument, specification of

TBSARG 245
SELECT command

NEWAPPL 185
PASSLIB parameter 190

SELECT service
ADDPOP parameter 15, 187
BARRIER keyword 187

SELECT service (continued)
description 185
example 193
LANG keyword 187
NEST keyword 188

service call, general call format 5
service interface routines 3, 5
service name parameter, coding on

service requests 6
services

command procedure format 1
description 1, 251
FILESTAT 19
FILEXFER 19, 66
QBASELIB 19
TRANS 19
WSCON 19
WSDISCON 19

services description
CONTROL 19
display 15
file tailoring 15
LOG 19
PQUERY 19
table 17

SETMSG service
description 15, 193
example 195

setting, processing modes
(CONTROL) 31

setting row pointer
TBBOTTOM 199
TBDISPL 199, 209
TBSCAN 199, 251
TBSKIP 199
TBTOP 264

SETTINGS option, affect on LIST
service 96

single name parameter, coding on request
for services 6

SISPSASC 3
sort information record 257
spacing on list data set 96
statistical information

setting and storing statistics 159
variables

LMMADD 127
LMMFIND 146
LMMLIST 149
LMMREP 157

storing statistics 159
syntax rules, services requests

(parameters) 6

T
table

adding or updating information 196
columns 17
definition 17
rows description 17

table display (TBDISPL) 207
table services

description 17
general services 17
row services 18

TBADD service
description 196
example 198

TBBOTTOM service
description 199
example 200

TBCLOSE service
description 201
example 203, 224

TBCREATE service
description 203
example 205

TBDELETE service
description 206
example 206

TBDISPL service
control variables related to 216
description 15, 207
example 214, 223
hints, tips, and techniques 218
notes about 229
system variables related to 214
use with other services 216
using 207

TBEND service
description 232
example 233

TBERASE service
description 233, 234

TBEXIST service
description 234
example 235

TBGET service
description 236
example 237

TBMOD service
description 237
example 239

TBOPEN service
description 239
example 224, 241

TBPUT service
description 241
example

command procedure function 224
using function variable pool

values 242
using with TBDISPL service 223

TBQUERY service
description 243
example 244

TBSARG service
description 245
example 248

TBSAVE service
description 249
example 250

TBSCAN service
description 251
example 254

TBSKIP service
description 255
example 257

TBSORT service
description 257
example 260

314 z/OS V1R2.0 ISPF Services Guide



TBSTATS service
description 260
example 264

TBTOP service
description 264
example 265

TBVCLEAR service
description 265
example 266

title_var_name 301
TRANS service 19
TRANS service, description 266
translate CCSID data (TRANS) 266

U
update row in table

TBMOD 237
TBPUT 241

update variables in shared pool or profile
pool (VPUT) 297

use count
TBCLOSE (close and save a

table) 201
TBCREATE (create a new table) 205
TBEND (close a table without

saving) 232

V
variable model lines, use 220
variable services summary 18
variables

associate edit mask with
(VMASK) 294

clearing to nulls (TBVCLEAR)
table 265

copy (VCOPY) 267
define in function pool

(VDEFINE) 269
erase from shared profile pool

(VERASE) 279
passed as parameter to services 4
remove definition from function pool

(VRESET) 300
remove definition of from function

pool (VDELETE) 279
replace in function pool

(VREPLACE) 299
reset 300
retrieve from shared pool or profile

pool (VGET) 281
TBDISPL parameters 216
update in shared pool or profile pool

(VPUT) 297
VCOPY service

description 267
example 269
used to access system variables 267

VDEFINE service
description 269
example 274, 275
exit routine 270

VDELETE service
description 279
example 279

VERASE service
description 18, 279
example 281
using 279

VGET service
accessing 281
accessing application profile

pool 282
View Interface service 289
VIEW service

description 282
recovery mode 283
recursive use 283

VIIF service 289
VL keyword assembler language 6, 8
VMASK service

description 294
example 297

VPUT service
accessing application profile

pool 297
accessing read-only extension 298

VREPLACE service
description 299
example 299

VRESET service
description 300
example 300

W
workstation command 188
workstation command var 189
Workstation Connection

WSCON service 300
Workstation Disconnection

WSDISCON service 303
Write data set list dialog 105
writing a message to log file (LOG) 174
writing a record to a data set 166
WSCMD 188
WSCMDV 189
WSCON 300
WSCON service 19

BKGRND 301
buf-len 302
buffer 302
character_set 301
codepage 301
FI 301
FRAME 301
ip_var_name 301
lu_var_name 301
NOGUIDSP 302
PANEL 302
title_var_name 301

WSDISCON 303
WSDISCON service 19

buf-len 303
buffer 304

Z
ZEDBDSN 63
ZEDROW 63
ZEDTDSN 63

ZEDTMEM 63
ZEDTRD 63
ZEDUSER 55, 283
ZEDUSER extension variable 63
ZEIUSER extension variable 54
ZERRALRM 14
ZERRALRM system variable 14
ZERRHM 14
ZERRHM system variable 15
ZERRLM 14
ZERRLM system variable 15
ZERRMSG 14
ZERRMSG system variable 15
ZERRSM 14
ZERRSM system variable 15
ZLC4DATE 128, 132
ZLCDATE 128, 132
ZLCNORC 128, 132
ZLINORC 128, 132
ZLLCMD 132
ZLLIB 132, 146
ZLM4DATE 128, 132
ZLMDATE 128, 132
ZLMEMBER 132
ZLMNORC 128, 133
ZLMOD

LMMADD, add a member to a data
set 127

LMMDISP, member list service 132
LMMFIND, find a library

member 146
LMMREP, replace a member of a data

set 157
ZLMSEC 128, 132, 147, 158
ZLMTIME 128, 132
ZLMTOP 132
ZLPDSUDA 133
ZLSTLPP system variable 97
ZLSTNUML 97
ZLSTTRUN system variable 96
ZLUDATA 132
ZLUSER 128, 133
ZLVERS 127, 132
ZTDMARK system variable 214
ZTDMSG system variable 215
ZTDROWS system variable 215
ZTDSELS system variable 215
ZTDTOP system variable 209, 215
ZTEMPF system variable 74

Index 315



316 z/OS V1R2.0 ISPF Services Guide



Readers’ Comments — We’d Like to Hear from You

Interactive System Productivity Facility (ISPF)
Services Guide
z/OS Version 1 Release 2.0

Publication No. SC34-4819-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.



Readers’ Comments — We’d Like to Hear from You
SC34-4819-01

SC34-4819-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering
Department G7IA / Bldg 503
Research Triangle Park, NC
27709-9990

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_





����

File Number: S370/4300-39
Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-4819-01


	Contents
	Figures
	Preface
	Who Should Use This Book?
	What Is in This Book?

	Summary of Changes
	ISPF Product Changes
	ISPF DM Component Changes
	ISPF PDF Component Changes
	ISPF SCLM Component Changes
	ISPF Client/Server Component Changes
	ISPF User Interface Considerations
	ISPF Migration Considerations
	ISPF Profiles
	Year 2000 Support for ISPF


	What’s in the z/OS V1R2.0 ISPF library?
	z/OS V1R2.0 ISPF

	Elements and Features in z/OS
	The ISPF User Interface
	Some Terms You Should Know
	How to Navigate in ISPF without Using Action Bars
	How to Navigate in ISPF Using the Action Bar Interface
	Action Bars
	Action Bar Choices
	Menu Action Bar Choice
	Utilities Action Bar Choice

	Point-and-Shoot Text Fields
	Function Keys
	Selection Fields

	Command Nesting

	Chapter 1. Introduction to ISPF Services
	Description of the Services
	Notation Conventions

	Using ISPQRY to Test Whether ISPF Is Active
	Invoking the ISPF Services
	Load Module Search Order
	Invoking Services from Command Procedures
	The ISPEXEC Interface
	ISPEXEC Parameter Conventions
	Using Command Invocation Variables
	Attention Interrupt Handling
	Passing Dialog Variables as Parameters

	Invoking ISPF Services with Program Functions
	The ISPLINK Interface
	CALL ISPLINK Parameters
	The ISPEXEC Interface
	CALL ISPEXEC Parameters
	Using Parameters as Symbolic Variables
	FORTRAN and Pascal
	APL2
	PL/I
	COBOL
	C
	Assembler


	Return Codes from Services
	Command Invocation Return Code Variable
	Call Invocation Return Code Variables
	Return Code of 12 or Higher
	System Variables Used to Format Error Messages
	Return Codes from I/O and Command Routines
	A Summary of the ISPF Services
	Display Services
	File Tailoring Services
	Library Access Services
	PDF Component Services
	Table Services
	Variable Services
	Miscellaneous Services



	Chapter 2. Description of the ISPF Services
	ADDPOP – Start Pop-Up Window Mode
	Command Procedure Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	BRIF – Browse Interface
	Command Invocation Format
	Call Invocation Format
	Parameters
	Dialog-Supplied Routines
	Read Routine
	Command Routine
	Return Codes
	Read Routine Return Codes
	Command Routine
	BRIF service
	Example


	BROWSE – Browse a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	CONTROL – Set Processing Modes
	Command Invocation Format
	Call Invocation Format
	ADDPOP/REMPOP Service Relation to Control Service
	Parameters
	Return Codes
	Example

	DISPLAY – Display Panels and Messages
	Command Invocation Format
	Call Invocation Format
	Parameters
	Using the COMMAND Option
	Return Codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	DSINFO – Data Set Information Dialog Service
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	EDIF – Edit Interface
	Command Invocation Format
	Call Invocation Format
	Parameters
	Dialog-Supplied Routines
	Read Routine
	Write Routine
	Command Routine
	Return Codes
	Read Routine
	Write Routine Return Codes
	Command Routine Return Codes
	EDIF Service Return Codes
	Example
	Call Invocation


	EDIREC - Initialize Edit Recovery
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	EDIT – Edit a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example 1
	Command Invocation
	Call Invocation

	Example 2
	Command Invocation
	Call Invocation


	EDREC – Specify Edit Recovery Handling
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	FILESTAT – Statistics for a file
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	FILEXFER – Upload or Download File
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	FTCLOSE – End File Tailoring
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	FTERASE – Erase File Tailoring Output
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	FTINCL – Include a Skeleton
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	FTOPEN – Begin File Tailoring
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	GETMSG – Get a Message
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	GRERROR – Graphics Error Block Service
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes

	GRINIT – Graphics Initialization
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	GRTERM – Graphics Termination Service
	Command Invocation Format
	Call Invocation Format
	Return Codes

	LIBDEF – Allocate Application Libraries
	LIBDEF Display Utility
	User Link Libraries
	Application Data Element Search Order

	Message Libraries
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example 1 - The DATASET keyword
	Example 2 - The EXCLDATA keyword
	Example 3 - The LIBRARY keyword
	Example 4 - The EXCLLIBR keyword
	Example 5
	Example 6 — STKADD


	LIST – Write Lines to the List Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Formatting Data to be Written to the List Data Set
	List Data Set Characteristics Affect the LIST Service
	Controlling Line Spacing, Page Eject, and Highlighting
	How ISPF Controls Printer Functions (CC Not Specified)
	How the Dialog Controls Printer Functions (CC Specified)
	Using System Variables ZLSTNUML and ZLSTLPP

	How Carriage Control Characters Affect Truncation
	Example 1
	Example 2
	Example 3
	Example 4

	LMCLOSE – Close a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMCOMP – Compresses a Partitioned Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMCOPY – Copy Members of a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMDDISP – Data Set List Service
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	QUERYENQ – Return ENQs
	Command Invocation Format
	Call Invocation Format
	Parameters
	Variables Returned in Each Row of the Table
	Return Codes

	LMDFREE – Free a Data Set List ID
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMDINIT – Initialize a Data Set List
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation
	Command Invocation
	Call Invocation


	LMDLIST – List Data Sets
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMERASE – Erase a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMFREE – Free Data Set from its Association with Data ID
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMGET – Read a Logical Record from a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMINIT – Generate a Data ID for a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples
	Command Invocation
	Call Invocation
	Command Invocation
	Call Invocation
	Command Invocation
	Call Invocation


	LMMADD – Add a Member to a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMMDEL – Delete a Member from a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMMDISP – Member List Service
	Dialog Variables
	DISPLAY Option
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	GET Option
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	PUT Option
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	ADD Option
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	Delete Option
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	FREE Option
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example


	LMMFIND – Find a Library Member
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMMLIST – List a Library’s Members
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation
	Command Invocation
	Call Invocation


	LMMOVE – Move Members of a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMMREN – Rename a Data Set Member
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMMREP – Replace a Member of a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMMSTATS – Set and Store, or Delete ISPF Statistics
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMOPEN – Open a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMPRINT – Print a Partitioned or Sequential Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMPUT – Write a Logical Record to a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMQUERY – Give a Dialog Information about a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LMRENAME – Rename an ISPF Library
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation
	Call Invocation


	LOG – Write a Message to the Log Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example 1
	Example 2
	Example 3

	MEMLIST – Member List Dialog Service
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	PQUERY – Obtain Panel Information
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	QBASELIB – Query Base Library Information
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	QLIBDEF – Query LIBDEF Definition Information
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	QUERYENQ – Query System ENQ Data
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return codes

	REMPOP – Remove a Pop-Up Window
	
	Call Invocation Format
	Parameters
	Return codes

	SELECT – Select a Panel or Function
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	SETMSG – Set Next Message
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example 1
	Example 2
	Return Codes

	TBADD – Add a Row to a Table
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example 1
	Example 2

	TBBOTTOM – Set the Row Pointer to Bottom
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBCLOSE – Close and Save a Table
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBCREATE – Create a New Table
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example 1
	Example 2
	Example 3

	TBDELETE – Delete a Row from a Table
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBDISPL – Display Table Information
	TBDISPL Operation
	Operational Results From User Actions
	ZTDTOP and ZTDSELS Variables

	Command Invocation Format
	Call Invocation Format
	Parameters
	Parameter Processing
	Return Codes
	Example
	System Variables Related to TBDISPL
	Panel Control Variables Related to TBDISPL
	Parameter Variables Related to TBDISPL
	Using TBDISPL with Other Services
	Techniques for Using the TBDISPL Service
	Rules Applying to Variable Model Lines
	An Example of Using the TBDISPL and TBPUT Services
	Command Procedure Function
	Description of Function Steps
	TBDISPL Summary

	TBEND – Close a Table without Saving
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBERASE – Erase a Table
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBEXIST – Determine Whether a Row Exists in a Table
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBGET – Retrieve a Row from a Table
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBMOD – Modify a Row in a Table
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBOPEN – Open a Table
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBPUT – Update a Row in a Table
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBQUERY – Obtain Table Information
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBSARG – Define a Search Argument
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples

	TBSAVE – Save a Table
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBSCAN – Search a Table
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example 1
	Example 2
	Example 3

	TBSKIP – Move the Row Pointer
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBSORT – Sort a Table
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example 1
	Example 2

	TBSTATS – Retrieve Table Statistics
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBTOP – Set the Row Pointer to the Top
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TBVCLEAR – Clear Table Variables
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	TRANS – Translate CCSID Data
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return codes

	VCOPY – Create a Copy of a Variable
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	VDEFINE – Define Function Variables
	Exit Routine
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example 1
	Example 2
	Example 3
	VDEFINE Exit Routine
	Return Codes
	Example of Using the VDEFINE Exit


	VDELETE – Remove a Definition of Function Variables
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	VERASE – Remove Variables from Shared or Profile Pool
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	VGET – Retrieve Variables from a Pool or Profile
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	VIEW – View a Data Set
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example 1
	Command Invocation
	Call Invocation

	Example 2
	Command Invocation
	Call Invocation


	VIIF – View Interface
	Command Invocation Format
	Call Invocation Format
	Parameters
	Dialog-Supplied Routines
	Read Routine
	Command Routine
	Return Codes
	Read Routine
	Command Routine Return Codes
	VIIF Service Return Codes
	Example
	Call Invocation


	VMASK – Mask and Edit Processing
	VMASK Call Invocation
	Parameters
	Return Codes
	Example
	The VEDIT Statement

	VPUT – Update Variables in the Shared or Profile Pool
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	VREPLACE – Replace a Variable
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example

	VRESET – Reset Function Variables
	Command Invocation Format
	Call Invocation Format
	Return Codes
	Example

	WSCON — Connect to a Workstation
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Restrictions


	WSDISCON — Disconnect from a Workstation
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Usage Notes
	Restrictions



	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

